Usage of artificial intelligence capabilities in immunology: from literature review to statistical processing and analysis of obtained data
- Authors: Berdiugina O.V.1
-
Affiliations:
- Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences
- Issue: Vol 28, No 3 (2025)
- Pages: 355-362
- Section: SHORT COMMUNICATIONS
- URL: https://journal-vniispk.ru/1028-7221/article/view/319868
- DOI: https://doi.org/10.46235/1028-7221-17100-UOA
- ID: 319868
Cite item
Full Text
Abstract
Traditional literature review and the standard methods of data analysis in immunology is time-consuming and does not allow rapid solution of large-scale and complex research problems. Artificial intelligence can assist in addressing this issue by automating the processes of search and evaluation of relevant information. The aim of this study was to determine the potential of artificial intelligence in immunological research, based on the automated collection of literature data and analysis of digital information. The theoretical aspect of the study was based on the analysis of materials from PubMed, Scopus, ResearchGate databases covering the years 2000-2025. The practical approach was conducted via comparative analysis of previously published data and conclusions obtained by means of artificial intelligence technologies, e.g., by GPT v.4.0 models. It was found that artificial intelligence technologies may be useful in conducting literature reviews in immunology, including compilation of findings, generation of graphical presentations, as well as visualization of new signaling pathways, cellular interactions, and disease-related factors. In addition to the text analysis, artificial intelligence may be applied to statistical processing and digital data analysis, such as detection of regularities, solution of forecasting issues, design of models. A comparison of previously studied data with the results obtained using GPT v.4.0 revealed several limitations of different chatbot models, including the dependence of responses on the style of query formulation, excessively generalized information synthesis, limited text output (up to 1,000 words), plagiarism risks, difficulties in generating figures, diagrams, and tables, presentation of comprehensive information predominantly in English, and spontaneous creation of non-existent references to the literature sources. Conclusions: 1. Artificial intelligence may sufficiently change immunological research, allowing for a more effective literature reviewing and deeper data analysis, however, requiring expert supervision at the initial stages. 2. Upon development of artificial intelligence technologies, they will become an integral part of the immunologist’s toolkit.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Olga V. Berdiugina
Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: berolga73@rambler.ru
ORCID iD: 0000-0003-3479-9730
SPIN-code: 5230-7435
PhD, MD (Biology), Leading Researcher, Inflammation Immunology Laboratory
Russian Federation, EкaterinburgReferences
- Бердюгина O.В., Гусев Е.Ю. Холекальциферол в роли средства неспецифической иммунопрофилактики COVID-19 // Медицинская иммунология, 2023, Т. 25, № 4. С. 823-830. [Berdiugina O.V., Gusev E.Yu Cholecalciferol as a means of nonspecific immunoprophylaxis against COVID-19. Meditsinskaya immunologiya = Medical Immunology (Russia), 2023, Vol. 25, no. 4, pp. 823-830. (In Russ.)] doi: 10.15789/1563-0625-CAA-2849.
- Abd-Alrazaq A., Schneider J., Mifsud B., Alam T., Househ M., Hamdi M., Shah Z. A comprehensive overview of the COVID-19 literature: machine learning-based bibliometric analysis. J. Med. Internet Res., 2021, Vol. 23, no. 3, e23703. doi: 10.2196/23703.
- Crispino A., Varricchio S., Ilardi G., Russo D., Di Crescenzo R.M., Staibano S., Merolla F. A Digital workflow for automated assessment of tumor-infiltrating lymphocytes in oral squamous cell carcinoma using QuPath and a StarDist-based model. Pathologica, 2024, Vol. 116, no. 6, pp. 390-403.
- D’Elia D., Truu J., Lahti L., Berland M., Papoutsoglou G., Ceci M., Zomer A., Lopes M.B., Ibrahimi E., Gruca A., Nechyporenko A., Frohme M., Klammsteiner T., Pau E.C.S., Marcos-Zambrano L.J., Hron K., Pio G., Simeon A., Suharoschi R., Moreno-Indias I., Temko A., Nedyalkova M., Apostol E.-S., Truică C.-O., Shigdel R., Telalović J.H., Bongcam-Rudloff E., Przymus P., Jordamović N.B., Falquet L., Tarazona S., Sampri A., Isola G., Pérez-Serrano D., Trajkovik V., Klucar L., Loncar-Turukalo T., Havulinna A.S., Jansen C., Bertelsen R.J., Claesson M.J. Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action. Front. Microbiol., 2023, Vol. 14, 1257002. doi: 10.3389/fmicb.2023.1257002.
- Elste J., Saini A., Mejia-Alvarez R., Mejía A., Millán-Pacheco C., Swanson-Mungerson M., Tiwari V. Significance of artificial intelligence in the study of virus-host cell interactions. Biomolecules, 2024, Vol. 14, no. 8, 911. doi: 10.3390/biom14080911.
- Gupta L., Gasparyan A.Y., Misra D.P., Agarwal V., Zimba O., Yessirkepov M. Information and misinformation on COVID-19: a cross-sectional survey study. J. Korean Med. Sci., 2020, Vol. 35, no. 27, e256. doi: 10.3346/jkms.2020.35.e256.
- Kirouac D.C., Saez-Rodriguez J., Swantek J., Burke J.M., Lauffenburger D.A., Sorger P.K. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks. BMC Syst. Biol., 2012, Vol. 6, 29. doi: 10.1186/1752-0509-6-29.
- Kryś J.D., Głowacki M., Śmieja P., Gront D. deepBBQ: A deep learning approach to the protein backbone reconstruction. Biomolecules, 2024, Vol. 14, no. 11, 1448. doi: 10.3390/biom14111448.
- Kumar A., Dixit S., Srinivasan K., M D., Vincent P.M.D.R. Personalized cancer vaccine design using AI-powered technologies. Front. Immunol., 2024, Vol. 15, 1357217. doi: 10.3389/fimmu.2024.1357217.
- Liang X., Zhou R., Li Y., Yang L., Su M., Lai K.P. Clinical characterization and therapeutic targets of vitamin A in patients with hepatocholangiocarcinoma and coronavirus disease. Aging, 2021, Vol. 13, no. 12, pp. 15785-15800. doi: 10.18632/aging.203220.
- Mohammad Piri S., Amin Habibi M., Shool S., Khazaeli Najafabadi M., Ahmadpour S., Alemi F., Aria Nejadghaderi S., Shokri P., Abdi M., Asghari N., Amir Asef-Agah S., Tavakolpour S. Role of T follicular helper cells in autoimmune rheumatic Diseases: A systematic review on immunopathogenesis and response to treatment. Hum. Immunol., 2024, Vol. 85, no. 5, 110838. doi: 10.1016/j.humimm.2024.110838.
- Stadler M., Horrer A., Fischer M.R. Crafting medical MCQs with generative AI: A how-to guide on leveraging ChatGPT. GMS J. Med. Educ., 2024, Vol. 41, no. 2, 20. doi: 10.3205/zma001675.
- Wolf J., Rasmussen D.K., Sun Y.J., Vu J.T., Wang E., Espinosa C., Bigini F., Chang R.T., Montague A.A., Tang P.H., Mruthyunjaya P., Aghaeepour N., Dufour A., Bassuk A.G., Mahajan V.B. Liquid-biopsy proteomics combined with AI identifies cellular drivers of eye aging and disease in vivo. Cell, 2023, Vol. 186, no. 22, pp. 4868-4884.e12.
- Wong D.S.H., Santos A.F. The future of food allergy diagnosis. Front. Allergy, 2024, Vol. 5, 1456585. doi: 10.3389/falgy.2024.1456585.
- Xiang Z., Hu J., Bu S., Ding J., Chen X., Li Z. Machine learning based prediction models for the prognosis of COVID-19 patients with DKA. Sci. Rep., 2025, Vol. 15, no. 1, 2633. doi: 10.1038/s41598-025-85357-9.
Supplementary files
