MT1/MT2 melatonin receptors in proinflammatory T helper cell populations

封面

如何引用文章

全文:

详细

Melatonin, a pineal gland hormone, is an effective regulator of the main T helper Th1 and Th17 populations. Currently, the studies of T helpers are shifting from classical to non-classical variants of these cells, primarily to Th1-polarized Th17 lymphocytes (Th17.1), which are formed in vitro and in vivo by transformation of differentiated Th17 cells into Th1 under polarizing conditions. Th17.1 cells have a significantly higher pro-inflammatory potential compared to classical Th1/Th17 and play a key role in pathogenesis of Th-dependent pro-inflammatory disorders, including autoimmune diseases. Such a shift in priorities in the study of T helper activity raises the issue of sensitivity of non-classical pathogenic CD4+T lymphocytes to melatonin-dependent regulation, which is largely determined by the cell membrane expression of high-affinity MT1 and MT2 melatonin receptors. Materials and methods. In this work, we studied the expression of MT1 and MT2 at the proinflammatory T helper populations in peripheral blood. Results. It was shown that non-classical Th1-polarized Th17 cells have a selectively high level of expression of these receptors, thus making them a priority target for the action of melatonin. Discussion and conclusions. Worth of note, MT1 and MT2 exert their effects, mainly, via inhibitory G proteins (Gi), suppressing the activity of adenylate cyclase, and, to a lesser extent, through Gq and Go proteins, activating phospholipase C, calcium channels and mitogen-activated protein kinases. Moreover, all these signaling pathways triggered by melatonin binding to specific membrane receptors are stimulatory or co-stimulatory for T cells. In this regard, one could expect a stimulatory effect of melatonin on the pathogenic Th17.1 population. However, melatonin receptors are not only on membrane, but also in target cell unclear. E.g., RORα (an obligate molecule for Th17 cells, both classical and non-classical) is able to bind at micromolar amounts to additional intracellular targets, such as calmodulin or hydroquinone, and trigger other signaling mechanisms that may correct MT1/MT2-dependent signals.

关键词

作者简介

Elena Kuklina

Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ibis_07@mail.ru
ORCID iD: 0000-0002-2173-2724

PhD, MD (Biology), Leading Researcher, Laboratory of Immunoregulation

俄罗斯联邦, Perm

Irina Danchenko

Perm State Medical University named after E.A. Wagner of the Ministry of Healthcare of the Russian Federation

Email: irene-dan@mail.ru
ORCID iD: 0000-0002-3145-5409

PhD (Medicine), Assistant Professor, Department of Neurology and Medical Genetics

俄罗斯联邦, Perm

Tatiana Baidina

Perm State Medical University named after E.A. Wagner of the Ministry of Healthcare of the Russian Federation

Email: tatiana_baidina@mail.ru
ORCID iD: 0000-0002-5114-0463

PhD, MD (Medicine), Professor, Department of Neurology and Medical Genetics

俄罗斯联邦, Perm

参考

  1. Куклина Е.М., Глебездина Н.С., Некрасова И.В. Роль мелатонина в контроле дифференцировки Т-лимфоцитов, продуцирующих интерлейкин-17 (Th17) // Бюллетень экспериментальной биологии и медицины, 2015. Т. 160, № 11. С. 604-607. [Kuklina E.M., Glebezdina N.S., Nekrasova I.V. Role of Melatonin in the Regulation of Differentiation of T Cells Producing Interleukin-17 (Th17). Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 2016, Vol. 160, no. 5, pp. 656-658. (In Russ.)]
  2. Carrillo-Vico A., Garcia-Maurino S., Calvo J.R., Guerrero J.M. Melatonin counteracts the inhibitory effect of PGE2 on IL-2 production in human lymphocytes via its Mt1 membrane receptor. FASEB J., 2003, Vol. 17, pp. 755-757.
  3. Cecon E., Oishi A., Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br. J. Pharm., 2018, Vol. 175, pp. 3263-3280.
  4. Chang T., Niu C., Sun C., Ma Y., Guo R., Ruan Z., Gao Y., Lu X., Li H., Lin Y., Lin J., Li Z. Melatonin exerts immunoregulatory effects by balancing peripheral effector and regulatory T helper cells in myasthenia gravis. Aging (Albany NY), 2020, Vol. 12, no. 21, pp. 21147-21160.
  5. Drazen D.L., Bilu D., Bilbo S.D., Nelson R.J. Melatonin enhancement of splenocyte proliferation is attenuated by luzindole, a melatonin receptor antagonist. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, Vol. 280, pp. R1476-R1482.
  6. Dubocovich M.L., Delagrange P., Krause D.N., Sugden D., Cardinali D.P., Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharm. Rev., 2010, Vol. 62, pp. 343-380.
  7. Farez M.F., Mascanfroni I.D., Mendez-Huergo S.P., Yeste A., Murugaiyan G., Garo L.P., Balbuena Aguirre M.E., Patel B., Ysrraelit M.C., Zhu C., Kuchroo V.K., Rabinovich G.A., Quintana F.J., Correale J. Melatonin Contributes to the Seasonality of Multiple Sclerosis Relapses. Cell, 2015, Vol. 162, no. 6, pp. 1338-1352.
  8. Garcia-Maurino S., Gonzalez-Haba M.G., Calvo J.R., Rafii-El-Idrissi M., Sanchez-Margalet V., Goberna R., Guerrero J.M. Melatonin enhances IL-2, IL-6 and IFNγ production by human circulating CD4+ cells: A posible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. J. Immunol., 1997, Vol. 159, no. 2, pp. 574-581.
  9. Garcia-Maurino S., Pozo D., Carrillo-Vico A., Calvo J.R., Guerrero J.M. Melatonin activates Th1 lymphocytes by increasing IL-12 production. Life Sci., 1999, Vol. 65, pp. 2143-2150.
  10. Garcia-Perganeda A., Pozo D., Guerrero J.M., Calvo J.R. Signal transduction for melatonin in human lymphocytes: involvement of a pertussis toxin-sensitive G protein. J. Immunol., 1997, Vol. 159, no. 8, pp. 3774-3781.
  11. Nikolaev G., Robeva R., Konakchieva R. Membrane melatonin receptors activated cell signaling in physiology and disease. Int. J. Mol. Sci., 2021, Vol. 23, no. 1, 471. doi: 10.3390/ijms23010471.
  12. Quirant-Sanchez B., Presas-Rodriguez S., Mansilla M.J., Teniente-Serra A., Hervas-Garcia J.V., Brieva L., Moral-Torres E, Cano A, Munteis E, Navarro-Barriuso J, Martinez-Caceres EM, Ramo-Tello C. Th1Th17CM lymphocyte subpopulation as a predictive biomarker of disease activity in multiple sclerosis patients under dimethyl fumarate or fingolimod treatment. Mediators Inflamm., 2019, Vol. 2019, 8147803. doi: 10.1155/2019/8147803.
  13. Ramstein J., Broos C.E., Simpson L.J., Ansel K.M., Sun S.A., Ho M.E., Woodruff P.G., Bhakta N.R., Christian L., Nguyen C.P., Antalek B.J., Benn B.S., Hendriks R.W., van den Blink B., Kool M., Koth L.L. IFN-γ–Producing T-Helper 17.1 Cells are increased in sarcoidosis and are more prevalent than T-helper type 1 cells. Am. J. Respir. Crit. Care. Med., 2016, Vol. 193, no. 11, pp. 1281-1291.
  14. Schnell A., Littman D.R., Kuchroo V.K. TH17 cell heterogeneity and its role in tissue inflammation. Nat. Immunol., 2023, Vol. 24, pp. 19-29.
  15. Thakore P.I., Schnell A., Zhao M., Huang L., Hou Y., Christian E., Zaghouani S., Wang C., Singh V., Ma S., Sankar V., Notarbartolo S., Buenrostro J.D., Sallusto F., Patsopoulos N.A., Rozenblatt-Rosen O., Kuchroo V.K., Regev A. The Chromatin landscape of Th17 cells reveals mechanisms of diversification of regulatory and pro-inflammatory states. BioRxiv, 2002, 2022.02.26.482041. doi: 10.1101/2022.02.26.482041.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kuklina E., Danchenko I., Baidina T., 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».