In vivo and in vitro influence of bacteriocins on the functions of innate immune cells

Cover Page

Cite item

Full Text

Abstract

The aim of this study was to investigate the effect of warnerin and hominin, the lantibiotics isolated from the growth media of Staphylococcus warneri and Staphylococcus hominis, respectively as well as action of nisin and the synthetic polyamino acid poly-L-arginine on the functional activity of innate immune cells in vivo and in vitro. The study concerned the following lantibiotics: warnerin (APD ID: AP02801), obtained from the growth medium of Staphylococcus warneri DSM 16081 bacteria, and hominin, isolated from the growth media of Staphylococcus hominis GISK-284 as well as nisin from Lactococcus lactis (Sigma, USA), along with poly-L-arginine hydrochloride, a polycationic synthetic peptide with known antibacterial properties (molecular weight, 5000-15000 Da, Sigma, USA). The In vivo studies were performed using peritoneal cells of white laboratory Swiss mice weighing 20-22 g. Peripheral blood leukocytes from healthy volunteer donors were used as an object of in vitro studies. The absorption activity of peritoneal cavity cells was assessed by flow cytometry, and the production of reactive oxygen species was measured using luminol-dependent chemiluminescence. It was found that both warnerin and hominin did significantly modulate ROS production in vivo. Both peptides enhanced ROS generation by peritoneal macrophages at the entire dose scale, whereas nisin showed a weaker stimulatory effect, increasing ROS production only at a dose of 0.1 mg/ kg. Warnerin in vivo had a statistically significant inhibitory effect on the absorptive activity of peritoneal cells, while hominin and nisin did not affect the percentage of phagocytosis at the entire dose range. In vitro, the production of active oxygen forms was inhibited by warnerin in both spontaneous and stimulated tests at high concentrations, and its stimulatory effect was seen at low concentrations. On the contrary, hominin enhanced the microbicidal potential in unstimulated cultures, but decreased zymosan-induced ROS production; both peptides decreased the scavenging activity of monocytes and neutrophils in vitro. Nisin and poly-L-arginine had no effect on phagocytic activity and microbicidal potential. The obtained data are in line with a hypothesis that antimicrobial peptides inhibit the growth of competitive microflora and exert a modulatory effect on the cell of innate immunity.

About the authors

Sergey V. Gein

Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences; Perm State University

Author for correspondence.
Email: hein73@mail.ru
ORCID iD: 0000-0002-0799-3397

PhD, MD (Medicine), Senior Researcher, Laboratory of Biochemistry of Microbial Development, Professor, Department of Microbiology and Immunology

Russian Federation, Perm; Perm

Tatyana V. Polyudova

Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: poludova76@mail.ru

PhD (Biology), Head, Laboratory of Biochemistry of Microbial Development

Russian Federation, Perm

Matvey V. Ibatullin

Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences; Perm State University

Email: manovvi@yandex.ru

Master’s Student, Department of Microbiology and Immunology, Engineer, Laboratory of Biochemistry of Microbial Development

Russian Federation, Perm; Perm

References

  1. Лемкина Л.М., Коробов В.П., Полюдова Т.В. Антибактериальный пептид хоминин klp-1 широкого спектра действия. Патент RU № 2528055 C1, 10.09.2014. [Lemkina L.M., Korobov V.P., Polyudova T.V. Patent RU No. 2528055 C1, 10.09.2014].
  2. Полюдова Т.В., Лемкина Л.М., Лихацкая Г.Н., Коробов В.П. Оптимизация условий получения и моделирование 3D-cтруктуры нового антибактериального пептида семейства лантибиотиков // Прикладная биохимия и микробиология, 2017. Т. 53 № 1. С. 47-54. [Polyudova T.V., Lyamkina L.M., Likhatskaya G.N., Korobov V.P. Optimization of the conditions for obtaining and modeling the 3D structure of a new antibacterial peptide of the lantibiotic family. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 2017, Vol. 53, no. 1, pp. 47-54. (In Russ.)]
  3. Barbour A., Smith L., Oveisi M., Williams M., Huang R.C., Marks C., Fine N., Sun C., Younesi F., Zargaran S., Orugunty R., Horvath T. D., Haidacher S.J., Haag A.M., Sabharwal A., Hinz B., Glogauer M. Discovery of phosphorylated lantibiotics with proimmune activity that regulate the oral microbiome. Proc. Natl. Acad. Sci. USA, 2023, Vol. 120, no. 22, e2219392120. doi: 10.1073/pnas.2219392120.
  4. Carson D.A., Barkema H.W., Naushad S., De Buck J. Bacteriocins of non-aureus staphylococci isolated from bovine milk. Appl. Environ. Microbiol., 2017, Vol. 83, no. 17, e01015-17. doi: 10.1128/AEM.01015-17.
  5. Cogen A.L., Yamasaki K., Muto J., Sanchez K.M., Crotty Alexander L., Tanios J., Lai Y., Kim J.E., Nizet V., Gallo R.L. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PloS One, 2010, Vol. 5, no. 1, e8557. doi: 10.1371/journal.pone.0008557.
  6. Fernández-Fernández R., Elsherbini A.M.A., Lozano C., Martínez A., de Toro M., Zarazaga M., Peschel A., Krismer B., Torres C. Genomic analysis of bacteriocin-producing staphylococci: high prevalence of lanthipeptides and the micrococcin P1 biosynthetic gene clusters. Probiotics Antimicrob. Proteins, 2025, Vol. 17, no. 1, pp. 159-174.
  7. Field D., Fernandez de Ullivarri M., Ross R.P., Hill C. After a century of nisin research – where are we now? FEMS Microbiol. Rev., 2023, Vol. 47, no, 3, fuad023. doi: 10.1093/femsre/fuad023.
  8. Li J., Jin J., Li S., Zhong Y., Jin Y., Zhang X., Xia B., Zhu Y., Guo R., Sun X., Guo J., Hu F., Xiao W., Huang F., Ye H., Li R., Zhou Y., Xiang X., Yao H., Yan Q., Su L., Wu L., Luo T., Liu Y., Guo X., Qin J., Qi H., He J., Wang J., Li Z. Tonsillar microbiome-derived lantibiotics induce structural changes of IL-6 and IL-21 receptors and modulate host immunity. Adv. Sci. (Weinh.), 2022, Vol. 9, no. 30, e2202706. doi: 10.1002/advs.202202706.
  9. Mookherjee N., Anderson M.A., Haagsman H.P., Davidson D.J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov., 2020, Vol. 19, no. 5, pp. 311-332.
  10. Nakatsuji T., Chen T.H., Narala S., Chun K.A., Two A.M., Yun T., Shafiq F., Kotol P.F., Bouslimani A., Melnik A.V., Latif H., Kim J.N., Lockhart A., Artis K., David G., Taylor P., Streib J., Dorrestein P.C., Grier A., Gill S.R., Zengler K., Hata T.R. Leung D.Y.M., Gallo R.L. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med., 2017, Vol. 9, no. 378, eaah4680. doi: 10.1126/scitranslmed.aah4680.
  11. Nakatsuji T., Gallo R.L. Antimicrobial peptides: old molecules with new ideas. J. Invest. Dermatol., 2012, Vol. 132, no. 3, Pt 2, pp. 887-895.
  12. O’Sullivan J.N., Rea M.C., O’Connor P.M., Hill C., Ross R.P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol. Ecol., 2019, Vol. 95, no. 2, fiy241. doi: 10.1093/femsec/fiy241.
  13. Sanford J.A., Gallo R.L. Functions of the skin microbiota in health and disease. Semin. Immunol., 2013, Vol. 25, no. 5, pp. 370-377.
  14. Tomic-Canic M., Burgess J.L., O’Neill K.E., Strbo N., Pastar I. Skin microbiota and its interplay with wound healing. Am. J. Clin. Dermatol., 2020, Vol. 21, Suppl. 1, pp. 36-43.
  15. Zhang Z.J., Cole C., Lin H., Wu C., Haro F., McSpadden E., van der Donk W.A., Pamer E.G. Exposure and resistance to lantibiotics impact microbiota composition and function. bioRxiv, 2023.12.30.573728. doi: 10.1101/2023.12.30.573728.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Gein S.V., Polyudova T.V., Ibatullin M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».