Peripheral blood CCR6+CXCR3-CD8+T cells in pathogenesis of relapsing-remitting multiple sclerosis
- Authors: Lebedev V.M.1, Frolova O.M.1, Starikova E.A.2, Mammedova J.T.2, Kudryavtsev I.V.2
-
Affiliations:
- N. Bechtereva Institute of the Human Brain, Russian Academy of Sciences
- Institute of Experimental Medicine
- Issue: Vol 28, No 3 (2025)
- Pages: 743-750
- Section: SHORT COMMUNICATIONS
- URL: https://journal-vniispk.ru/1028-7221/article/view/319928
- DOI: https://doi.org/10.46235/1028-7221-17141-PBC
- ID: 319928
Cite item
Full Text
Abstract
Multiple sclerosis (MS) is a chronic progressive neurodegenerative autoimmune disease characterized by disseminated demyelination patches in brain and spinal cord, containing different subsets of immune cells, including CD8+T cells. Currently, CD8+T cells may be subdivided into three main subsets, including Tc1, Tc2 and Tc17, according to their cytokine production profile and phenotype. A balance between the cytolytic Tc1 and cytokine-producing Tc2 and Tc17 cell subsets seems to play crucial role in emergence of diverse pathological conditions including autoimmunity. Thus, we have examined the frequency of Tc cell subsets in peripheral blood of patients with relapsing-remitting MS (MS, n = 25), and healthy individuals (HC, n = 24) matched for sex and age. To analyze the frequency of CD8+T cell subsets, we used multicolor flow cytometry. We evaluated the relative and absolute frequencies of Tc1 (CCR6-CXCR3+), Tc2 (CCR6-CXCR3-), Tc17 (CCR6+CXCR3-) and Tc17.1 (CCR6+CXCR3+) cells, like as their relative distribution along the main maturation stages of CD8+T cells, including ‘‘naïve’’ (CD45RA+CD62L+), central (СМ) and effector (ЕМ) memory, as well as TEMRA (CD45RA+CD62L-) cells. First, we have found that the relative frequency of Tc1 was decreased in MS group versus HC, whereas the relative and absolute frequencies of Тс17 of Тс17.1 were significantly elevated in MS patients. Next, our data revealed a significantly increased frequency of Тс17 cells at all analyzed stages of CD8+T cell maturation in peripheral blood samples from MS patients. Moreover, the differences against control group were more pronounced in the ЕМ and TEMRA CD8+T cell subsets which are able to migrate to inflammation sites (11.66% (4.75-14.69) versus 2.45% (1.48-3.89) and 4.91% (3.68-8.63) versus 0.41% (0.11-1.30), respectively, р < 0.001 in both cases). Hence, we provide some new insights in the frequency of ‘‘polarized’’ CD8+T cell subsets in patients with MS. The obtained data suggest Tc17 cells to be an important part in MS pathogenesis which may be used for development of new diagnostic techniques and treatment approaches in MS patients.
Full Text
##article.viewOnOriginalSite##About the authors
Valeriy M. Lebedev
N. Bechtereva Institute of the Human Brain, Russian Academy of Sciences
Email: lebedevvaleriy@bk.ru
Neurologist, Head of the Neurology Department, Junior Researcher at the Laboratory of Targeted Intracerebral Drug Delivery
Russian Federation, St. PetersburgOlga M. Frolova
N. Bechtereva Institute of the Human Brain, Russian Academy of Sciences
Email: dr.novoselova@gmail.com
Neurologist, Junior Researcher, Laboratory of Targeted Intracerebral Drug Delivery
Russian Federation, St. PetersburgEleonora A. Starikova
Institute of Experimental Medicine
Email: Starickova@yandex.ru
PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology
Russian Federation, 12 Acad. Pavlov St, St. Petersburg, 197376Jennet T. Mammedova
Institute of Experimental Medicine
Email: jennet_m@mail.ru
Researcher, Laboratory of Cellular Immunology
Russian Federation, 12 Acad. Pavlov St, St. Petersburg, 197376Igor V. Kudryavtsev
Institute of Experimental Medicine
Author for correspondence.
Email: igorek1981@yandex.ru
PhD (Biology), Head, Laboratory of Cellular Immunology
Russian Federation, 12 Acad. Pavlov St, St. Petersburg, 197376References
- Annunziato F., Romagnani C., Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy. Clin. Immunol., 2015, Vol. 135, no. 3, pp. 626-635.
- Kebir H., Kreymborg K., Ifergan I., Dodelet-Devillers A., Cayrol R., Bernard M., Giuliani F., Arbour N., Becher B., Prat A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med., 2007, Vol. 13, no. 10, pp. 1173-1175.
- Kudryavtsev I., Benevolenskaya S., Serebriakova M., Grigor’yeva I., Kuvardin E., Rubinstein A., Golovkin A., Kalinina O., Zaikova E., Lapin S., Maslyanskiy A. Circulating CD8+ T cell subsets in primary Sjögren’s syndrome. Biomedicines, 2023, Vol. 11, no. 10, 2778. doi: 10.3390/biomedicines11102778.
- Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtsov D.E., Totolian A.A. Heterogenous CD8+ T cell maturation and ‘polarization’ in acute and convalescent COVID-19 patients. Viruses, 2022, Vol. 14, no. 9, 1906. doi: 10.3390/v14091906.
- Lolli F., Martini H., Citro A., Franceschini D., Portaccio E., Amato M.P., Mechelli R., Annibali V., Sidney J., Sette A., Salvetti M., Barnaba V. Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis. J. Neuroinflammation, 2013, Vol. 10, 94. doi: 10.1186/1742-2094-10-94.
- Loyal L., Warth S., Jürchott K., Mölder F., Nikolaou C., Babel N., Nienen M., Durlanik S., Stark R., Kruse B., Frentsch M., Sabat R., Wolk K., Thiel A. SLAMF7 and IL-6R define distinct cytotoxic versus helper memory CD8+ T cells. Nat. Commun., 2020, Vol. 11, 6357. https://doi.org/10.1038/s41467-020-19002-6.
- Lückel C., Picard F., Raifer H., Campos Carrascosa L., Guralnik A., Zhang Y., Klein M., Bittner S., Steffen F., Moos S., Marini F., Gloury R., Kurschus F.C., Chao Y.Y., Bertrams W., Sexl V., Schmeck B., Bonetti L., Grusdat M., Lohoff M., Zielinski C.E., Zipp F., Kallies A., Brenner D., Berger M., Bopp T., Tackenberg B., Huber M. IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nat. Commun., 2019, Vol. 10, no. 1, 5722. doi: 10.1038/s41467-019-13731-z.
- Mittrücker H.W., Visekruna A., Huber M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch. Immunol. Ther. Exp. (Warsz), 2014, Vol. 62, no. 6, pp. 449-458.
- Nicol B., Salou M., Vogel I., Garcia A., Dugast E., Morille J., Kilens S., Charpentier E., Donnart A., Nedellec S., Jacq-Foucher M., Le Frère F., Wiertlewski S., Bourreille A., Brouard S., Michel L., David L., Gourraud P.A., Degauque N., Nicot A.B., Berthelot L., Laplaud D.A. An intermediate level of CD161 expression defines a novel activated, inflammatory, and pathogenic subset of CD8+ T cells involved in multiple sclerosis. J Autoimmun., 2018, Vol. 88, pp. 61-74.
- Reich D.S., Lucchinetti C.F., Calabresi P.A. Multiple Sclerosis. N. Engl. J. Med., 2018, Vol. 378, no. 2, pp. 169-180.
- Rubinstein A., Kudryavtsev I., Arsentieva N., Korobova Z.R., Isakov D., Totolian A.A. CXCR3-Expressing T Cells in Infections and Autoimmunity. Front. Biosci. (Landmark Ed.), 2024, Vol. 29, no. 8, 301. doi: 10.31083/j.fbl2908301.
- Salehi Z., Doosti R., Beheshti M., Janzamin E., Sahraian M.A., Izad M. Differential frequency of CD8+ T cell subsets in multiple sclerosis patients with various clinical patterns. PLoS One, 2016, Vol. 11, no. 7, e0159565. doi: 10.1371/journal.pone.0159565.
- Stojić-Vukanić Z., Hadžibegović S., Nicole O., Nacka-Aleksić M., Leštarević S., Leposavić G. CD8+ T cell-mediated mechanisms contribute to the progression of neurocognitive impairment in both multiple sclerosis and Alzheimer’s disease? Front. Immunol., 2020, Vol. 11, 566225. doi: 10.3389/fimmu.2020.566225.
- Wang H.H., Dai Y.Q., Qiu W., Lu Z.Q., Peng F.H., Wang Y.G., Bao J., Li Y., Hu X.Q. Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J. Clin. Neurosci., 2011, Vol. 18, pp. 1313-1317.
Supplementary files
