Function of human skin T cells in wound healing in the in vitro experimental setting

封面

如何引用文章

全文:

详细

Currently, the treatment of persistent non-healing wounds is among the most difficult clinical issues. We studied 20 samples of normal human skin, 10 specimens from patients with acute trauma, and 9 samples from the patients with chronic wounds that did not heal within 2 months. Using multicolor flow cytometry, we found that the resident T lymphocytes (CD3+αβ+ and CD3+γθ+) are able to locally produce biologically active substances, normalize human skin homeostasis, thus promoting the wound healing. The data obtained indicate that the blood contains mainly αβ+T lymphocytes (p < 0.001), while the γθ+T cells detected in wounds represent a population similar to skin cells. We found no difference in the ratio of resident T cells in chronic and acute wounds, and healthy epithelium. Accordingly, non-healing of wounds and chronic clinical course may be caused by dysfunction of T cells. CD69 regulates γθ T cell secretion of growth factors, IFNγ, IL-17 and IL-22. The relative number of CD69-expressing T cells from the patients with acute wounds was significantly increased, if compared with cells from normal epidermis and chronic wounds (10.5%±2.3, 7.6%±1.24, and 3.0%±1.05, respectively. p < 0.001). The number of cells with the CD3+αβ+CD69+ phenotype did not differ significantly between all three groups under comparison. Dysregulation of T cell-mediated healing in chronic wounds is caused by reduced production of IGF-1 by resident CD3+αβ+T lymphocytes (1.7%±0.9 (p < 0.001), and CD3+γθ+ (0.44%±0.02, p < 0.001) compared to CD3+αβ+T cells derived from acute wounds (13.6%±5.6) and CD3+γθ+ (8.9%±3.1). The αβ+ and γθ+ T cells isolated from non-healing chronic wounds did not respond to mitogenic stimuli, unlike the cells obtained from acute wounds and healthy skin. In vitro analysis of cytokine secretion by the CD69-deficient dermal γθ T cells showed a lower spontaneous secretion of IL-22 (4.56%±2.3 and 23.9%±1.05 and 10.6%±1.24, respectively; p < 0.001) and IL-2 (0.9%±0.08 and 22.6%±2.5 and 3.9%±1.0, and respectively; p < 0.01). When analyzing the number of resident γθ skin T cells secreting IL-17, we obtained the following differences for healthy skin (1.4%±0.08), acute wounds (11.3%±3.2) and chronic wounds (31.7%±11.8), thus showing a significant intergroup difference (p < 0.001). T lymphocytes in chronic wounds exhibit some functional disorders and are not able to produce biologically active substances that promote physiological tissue regeneration. The results suggest a role of resident T cells in human skin in wound healing processes and provide new insights into the pathogenesis of chronic wounds.

作者简介

Elena Kostolomova

Tyumen State Medical University; Institute of Fundamental and Clinical Immunology, Tyumen Branch

编辑信件的主要联系方式.
Email: lenakost@mail.ru
ORCID iD: 0000-0002-0237-5522

PhD (Biology), Associate Professor, Department of Microbiology, Research Associate, Laboratory of Genomics, Proteomics and Metabolomics, University Research Institute of Medical Biotechnology and Biomedicine, Tyumen State Medical University; Head, Research Laboratory, Institute of Fundamental and Clinical Immunology, Tyumen Branch, Tyumen, Russian Federation

俄罗斯联邦, Tyumen; Tyumen

Svyatoslav Strelin

Timur Khidarov IQ Plastique

Email: svyatos@mail.ru

PhD (Medicine), Associate Professor, Plastic Surgeon, Head Physician, Timur Khidarov IQ Plastique, Moscow, Russian Federation

俄罗斯联邦, Moscow

Yuri Sukhovei

Institute of Fundamental and Clinical Immunology, Tyumen Branch; Tyumen Scientific Centre, Siberian Branch, Russian Academy of Sciences

Email: i_yura62@mail.ru

PhD, MD (Medicine), Professor, Tyumen Scientific Centre, Siberian Branch, Russian Academy of Sciences; Leading Research Associate, Institute of Fundamental and Clinical Immunology, Tyumen Branch, Tyumen, Russian Federation

俄罗斯联邦, Tyumen; Tyumen

Irina Unger

Institute of Fundamental and Clinical Immunology, Tyumen Branch

Email: irinaunger@yandex.ru

PhD (Medicine), Director, Leading Research Associate, Institute of Fundamental and Clinical Immunology, Tyumen Branch, Tyumen, Russian Federation

俄罗斯联邦, Tyumen

Tatiana Akuneeva

Institute of Fundamental and Clinical Immunology, Tyumen Branch

Email: tatyana_akuneeva@mail.ru

Senior Research Associate, Institute of Fundamental and Clinical Immunology, Tyumen Branch, Tyumen, Russian Federation

俄罗斯联邦, Tyumen

Alexander Markov

Tyumen State Medical University

Email: alexdoktor@inbox.ru

PhD (Medicine), Director, Leading Research Associate, University Research Institute of Medical Biotechnology and Biomedicine, Associate Professor, Department of Preventive Medicine and Rehabilitation, Tyumen State Medical University, Tyumen, Russian Federation

俄罗斯联邦, Tyumen

Elizaveta Polyanskikh

Tyumen State Medical University

Email: polyanskih.li@mail.ru

Student, Institute of Motherhood and Childhood, Tyumen State Medical University, Tyumen, Russian Federation

俄罗斯联邦, Tyumen

参考

  1. Гольцов С.В., Костоломова Е.Г., Суховей Ю.Г., Паульс В.Ю. Способ определения субпопуляционного состава клеток кожи и получения цитоиммунограммы кожи. Патент RU2630607 (Россия) от 02.06.2016. [Goltsov S.V., Kostolomova E.G., Suhovei Yu.G., Pauls V.Yu. A method for determining the subpopulation composition of skin cells and obtaining a skin cytoimmunogram. Patent RU2630607 (Russia) on 02.06.2016].
  2. Костоломова Е.Г., Суховей Ю.Г., Унгер И.Г. Дозозависимое влияние лиофилизированного экстракта клеток куриного эмбриона на индуцированный апоптоз моноцитов в условиях in vitro // Российский иммунологический журнал, 2019. Т. 13 (22), № 3. С. 1206-1210. [Kostolomova E.G., Suhovei Yu.G., Unger I.G. Dependable effect of lyophylized extract of chicken embryo cells on induced apoptosis of monocytes under in vitro conditions. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2019, Vol. 13 (22), no. 3, pp. 1206-1210. (In Russ.)]
  3. Костоломова Е.Г., Суховей Ю.Г., Унгер И.Г., Акунеева Т.В. Взаимодействие иммуноцитов кожи в процессе репаративной регенерации в ране // Российский иммунологический журнал, 2017. Т. 20, № 2. С. 148-150. [Kostolomova E.G., Suhovei Yu.G., Unger I.G., Akuneeva Т.V. Interaction of skin immunocytes in the process of reparative regeneration in the wound. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2017, Vol. 20, no. 2, pp. 148-150. (In Russ.)]
  4. Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шестицветного цитофлуоримерического анализа // Медицинская иммунология, 2015. Т. 17, № 1. С. 19-26. [Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2015, Vol. 17, no. 1, pp. 19-26. (In Russ.) doi: 10.15789/1563-0625-2015-1-19-26.
  5. Марков А.А., Костоломова Е.Г., Тимохина Т.Х., Соловьев Г.С., Паромова Я.И., Полянских Е.Д., Воронин К.А. Влияние супернатанта Bifidobacterium bifidum на морфофункциональные свойства фибробластов человека в динамике в эксперименте in vitro // Медицинская иммунология, 2023. Т. 25, № 3. С. 581-586. [Markov A.A., Kostolomova E.G., Timokhina T.Kh., Solovyev G.S., Paromova Ya.I., Polyanskikh E.D., Voronin K.A. Effect of Bifidobacterium bifidum supernatant on the morphological and functional characteristics of human fibroblasts in real time during an in vitro experiment. Meditsinskaya immunologiya = Medical Immunology (Russia), 2023, Vol. 25, no. 3, pp. 581-586. (In Russ.)] doi: 10.15789/1563-0625-EOB-2720.
  6. Олейник Е.К., Чуров А.В., Олейник В.М. Иммунологическая память: роль регуляторных клеток // Медицинская иммунология, 2018. Т. 20, № 5. С. 613-620. [Oleinik E.K., Churov A.V., Oleinik V.M. Immunological memory: the role of regulatory cells (TREGS). Meditsinskaya Immunologiya = Medical Immunology (Russia), 2018, Vol. 20, no. 5, pp. 613-620. (In Russ.) doi: 10.15789/1563-0625-2018-5-613-620.
  7. Суховей Ю.Г., Костоломова Е.Г., Унгер И.Г., Акунеева Т.В. Локальный иммунитет кожи как отражение ее возрастного и функционального состояния // Российский иммунологический журнал, 2017. Т. 20, № 3. C. 521-523. [Sukhovei Y.G., Kostolomova E.G., Unger I.G., Akuneeva T.V. Local immunity of skin as reflection of its age and functional state. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2017, Vol. 20, no. 3, pp. 521-523. (In Russ.)]
  8. Bernal-Alferes B., Gómez-Mosqueira R., Ortega-Tapia G.T., Burgos-Vargas R., García-Latorre E., Domínguez-López M.L., Romero-López J.P. The role of  T cells in the immunopathogenesis of inflammatory diseases: from basic biology to therapeutic targeting. J. Leukoc. Biol., 2023, qiad046. doi: 10.1093/jleuko/qiad046.
  9. Boothby I.C., Cohen J.N., Rosenblum M.D. Regulatory T cells in skin injury: At the crossroads of tolerance and tissue repair. Sci. Immunol, 2020, Vol. 5, no. 47, eaaz9631. doi: 10.1126/sciimmunol.aaz9631.
  10. Cibrián D., Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol., 2017, Vol. 47, no. 6, pp. 946-953.
  11. Cruz M.S., Diamond A., Russell A., Jameson J.M. Human  and  T cells in skin immunity and disease. Front. Immunol., 2018, Vol. 9, 1304. doi: 10.3389/fimmu.2018.01304.
  12. Elijah I.E., Branski L.K., Finnerty C.C., Herndon D.N. The GH/IGF-1 system in critical illness. Best Pract. Res. Clin. Endocrinol. Metab., 2011, Vol. 25, no. 5, pp. 759-767.
  13. Farag A.G.A., Abdu Allah A.M.K., El-Rebey H.S., Mohamed Ibraheem K.I., Mohamed A.S.E.D., Labeeb A.Z., Elgazzar A.E., Haggag M.M. Role of insulin-like growth factor-1 in skin tags: a clinical, genetic and immunohistochemical study in a sample of Egyptian patients. Clin. Cosmet. Investig. Dermatol., 2019, Vol. 12, pp. 255-266.
  14. Garoufalia Z., Papadopetraki A., Karatza E., Vardakostas D., Philippou A., Kouraklis G., Mantas D. Insulin-like growth factor-I and wound healing, a potential answer to non-healing wounds: A systematic review of the literature and future perspectives. Biomed Rep., 2021, Vol. 15, no. 2, 66. doi: 10.3892/br.2021.1442.
  15. Isailovic N., Daigo K., Mantovani A., Selmi C. Interleukin-17 and innate immunity in infections and chronic inflammation. J. Autoimmun., 2015, Vol. 60, pp. 1-11.
  16. Ligi D., Mosti G., Croce L., Raffetto J.D., Mannello F. Chronic venous disease – Part I: Inflammatory biomarkers in wound healing. Biochim. Biophys. Acta, 2016, Vol. 1862, no. 10, pp. 1964-1974.
  17. Liu M., Liu Z., Chen Y., Peng S., Yang J., Chen C., Wang J., Shang R., Tang Y., Huang Y., Zhang X., Hu X., Liou Y.C., Luo G., He W. Dendritic epidermal T cells secreting exosomes promote the proliferation of epidermal stem cells to enhance wound re-epithelialization. Stem Cell Res. Ther., 2022, Vol. 13, no. 1, 121. doi: 10.1186/s13287-022-02783-6.
  18. Marzano A.V., Damiani G., Ceccherini I., Berti E., Gattorno M., Cugno M. Autoinflammation in pyoderma gangrenosum and its syndromic form (pyoderma gangrenosum, acne and suppurative hidradenitis). Br. J. Dermatol., 2017, Vol. 176, no. 6, pp. 1588-1598.
  19. McGee H.M., Schmidt B.A., Booth C.J., Yancopoulos G.D., Valenzuela D.M., Murphy A.J., Stevens S., Flavell R.A., Horsley V. IL-22 promotes fibroblast-mediated wound repair in the skin. J. Invest. Dermatol., 2013, Vol. 133, no. 5, pp. 1321-1329.
  20. Miescher I., Rieber J., Calcagni M., Buschmann J. In vitro and In vivo effects of IGF-1 delivery strategies on tendon healing: a review. Int. J. Mol. Sci., 2023, Vol. 24, no. 3, 2370. doi: 10.3390/ijms24032370.
  21. Munoz L.D., Sweeney M.J., Jameson J.M. Skin resident  T cell function and regulation in wound repair. Int. J. Mol. Sci., 2020, Vol. 21, no. 23, 9286. doi: 10.3390/ijms21239286.
  22. Raziyeva K., Kim Y., Zharkinbekov Z., Kassymbek K., Jimi S., Saparov A. Immunology of acute and chronic wound healing. Biomolecules, 2021, Vol. 11, no. 5, 700. doi: 10.3390/biom11050700.
  23. Tokura Y., Phadungsaksawasdi P., Kurihara K., Fujiyama T., Honda T. Pathophysiology of skin resident memory T Cells. Front. Immunol., 2021, Vol. 11, 618897. doi: 10.3389/fimmu.2020.618897.
  24. Tu C.-L., Celli A., Mauro T., Chang W. Calcium-sensing receptor regulates epidermal intracellular Ca2+ signaling and re-epithelialization after wounding. J. Investig. Dermatol., 2019, Vol. 139, Iss. 4, pp. 919-929.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Костоломова Е., Стрелин С., Суховей Ю., Унгер И., Акунеева Т., Марков А., Полянских Е., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».