The use of L-asparaginase for the treatment of solid tumors: data from experimental studies and clinical trials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Drug therapy is one of the main strategies of cancer treatment. L-asparaginase, the enzyme that hydrolyzes asparagine, has been included in the treatment regimens for acute lymphoblastic leukemia and other hematological malignancies since more than 50 years ago, but its use for the treatment of solid tumors is still extremely limited. This review analyzes experimental data on the sensitivity of cell lines and xenografts of solid tumors to L-asparaginase, examines the results of clinical trials. Among the mechanisms of the cytotoxic effect of L-asparaginase on tumor cells, such processes as depletion of aspartic and glutamic acids, influence on the internal and external pathways of apoptosis, inhibition of cellular processes through a decrease in the activity of the mTOR protein, and weakening of the expression of the telomerase gene are discussed. Separately, molecular markers are considered, which can be used to suggest the effectiveness of future therapy with L-asparaginase in solid tumors. These markers include expression levels of asparagine synthetase and glutamine synthetase genes, degree of methylation of the ASNS gene promoter region, PTEN protein activity and autophagy, bone marrow environment of tumor cells, as well as expression of genes associated with asparaginase resistance (such as the μ1 opioid receptor gene and the huntingtin-associated protein 1 gene).

About the authors

Il’ya A. Kislyak

Peoples’ Friendship University of Russia

Author for correspondence.
Email: kislyal.ilya.98@mail.ru
ORCID iD: 0000-0002-6042-9795
Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow

Marina V. Pokrovskaya

Institute of Biomedical Chemistry

Email: ivan1190@yandex.ru
ORCID iD: 0009-0008-2726-3632

Cand.  Sci. (Bio.)

Russian Federation, Moscow

Darya Yu. Zhanturina

Peoples’ Friendship University of Russia

Email: dashazh@gmail.com
ORCID iD: 0009-0005-6521-3220
Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow

Vadim S. Pokrovsky

Peoples’ Friendship University of Russia; N.N. Blokhin National Medical Research Center of Oncology

Email: v.pokrovsky@ronc.ru
ORCID iD: 0000-0003-4006-9320
SPIN-code: 4552-1226

MD, Dr. Sci. (Med.)

Russian Federation, Moscow; 6 Miklukho-Maklaya street, 117198 Moscow; 24 Kashirskoe shosse, Moscow 115478

References

  1. Bender C, Maese L, Carter-Febres M, Verma A. Clinical Utility of Pegaspargase in Children, Adolescents and Young Adult Patients with Acute Lymphoblastic Leukemia: A Review. Blood and Lymphatic Cancer. 2021;11:25–40. doi: 10.2147/BLCTT.S245210
  2. Juluri KR, Siu C, Cassaday RD. Asparaginase in the Treatment of Acute Lymphoblastic Leukemia in Adults: Current Evidence and Place in Therapy. Blood and Lymphatic Cancer. 2022;12:55–79. doi: 10.2147/BLCTT.S342052
  3. Maese L, Rau RE. Current Use of Asparaginase in Acute Lymphoblastic Leukemia/Lymphoblastic Lymphoma. Front Pediatr. 2022;10:902117. doi: 10.3389/fped.2022.902117
  4. Tosta Perez M, Herrera Belen L, Letelier P, et al. L-Asparaginase as the gold standard in the treatment of acute lymphoblastic leukemia: a comprehensive review. Medical Oncology. 2023;40(5). doi: 10.1007/s12032-023-02014-9
  5. Tse E, Zhao WL, Xiong J, Kwong YL. How we treat NK/T-cell lymphomas. Journal of Hematology & Oncology. 2022;15(1):74. doi: 10.1186/s13045-022-01293-5
  6. Wang N, Ji W, Wang L, et al. Overview of the structure, side effects, and activity assays of l-asparaginase as a therapy drug of acute lymphoblastic leukemia. RSC Medicinal Chemistry. 2022;13(2):117–128. doi: 10.1039/d1md00344e
  7. Pokrovsky VS, Vinnikov D. L-Asparaginase for newly diagnosed extra-nodal NK/T-cell lymphoma: systematic review and meta-analysis. Expert Review of Anticancer Therapy. 2017;17(8):759–768. doi: 10.1080/14737140.2017.1344100
  8. Pokrovsky VS, Vinnikov D. Defining the toxicity of current regimens for extranodal NK/T cell lymphoma: a systematic review and metaproportion. Expert Review of Anticancer Therapy. 2019;19(1):93–104. doi: 10.1080/14737140.2019.1549992
  9. Dumina MV, Eldarov MA, Zdanov DD, Sokolov NN. L-asparaginases of extremophilic microorganisms in biomedicine. Biomeditsinskaya Khimiya. 2020;66(2):105–123. (In Russ). doi: 10.18097/PBMC20206602105
  10. Ghasemian A, Al-Marzoqi AH, Al-Abodi HR, et al. Bacterial l-asparaginases for cancer therapy: Current knowledge and future perspectives. Journal of Cellular Physiology. 2019;234(11):19271–19279. doi: 10.1002/jcp.28563
  11. Krishnapura PR, Belur PD, Subramanya S. A critical review on properties and applications of microbial l-asparaginases. Critical Reviews in Microbiology. 2016;42(5):720–737. doi: 10.3109/1040841X.2015.1022505
  12. Loch JI, Jaskolski M. Structural and biophysical aspects of L-asparaginases: a growing family with amazing diversity. IUCrJ. 2021;8(Pt 4):514–531. doi: 10.1107/S2052252521006011
  13. Sokolov NN, Eldarov MA, Pokrovskaya MV, et al. Bacterial recombinant L-asparaginases: properties, structure and anti-proliferative activity. Biomeditsinskaya Khimiya. 2015;61(3):312–324. (In Russ). doi: 10.18097/PBMC20156103312
  14. Zielezinski A, Loch JI, Karlowski WM, Jaskolski M. Massive annotation of bacterial L-asparaginases reveals their puzzling distribution and frequent gene transfer events. Scientific Reports. 2022;12(1):15797. doi: 10.1038/s41598-022-19689-1
  15. Sidoruk KV, Pokrovsky VS, Borisova AA, et al. Creation of a producent, optimization of expression, and purification of recombinant Yersinia pseudotuberculosis L-asparaginase. Bulletin of Experimental Biology and Medicine. 2011;152(2):219–223. doi: 10.1007/s10517-011-1493-7
  16. de Souza Guimaraes M, Cachumba JJM, Bueno CZ, et al. Peg-Grafted Liposomes for L-Asparaginase Encapsulation. Pharmaceutics. 2022;14(9). doi: 10.3390/pharmaceutics14091819
  17. Meneguetti GP, Santos J, Obreque KMT, et al. Novel site-specific PEGylated L-asparaginase. PLoS One. 2019;14(2):e0211951. doi: 10.1371/journal.pone.0211951
  18. Riley DO, Schlefman JM, Vitzthum Von Eckstaedt VH, et al. Pegaspargase in Practice: Minimizing Toxicity, Maximizing Benefit. Current Hematologic Malignancy Reports. 2021;16(3):314–324. doi: 10.1007/s11899-021-00638-0
  19. Villanueva-Flores F, Zarate-Romero A, Torres AG, Huerta-Saquero A. Encapsulation of Asparaginase as a Promising Strategy to Improve In vivo Drug Performance. Pharmaceutics. 2021;13(11). doi: 10.3390/pharmaceutics13111965
  20. Wang Y, Xu W, Wu H, et al. Microbial production, molecular modification, and practical application of L-Asparaginase: A review. International Journal of Biological Macromolecules. 2021;186:975–983. doi: 10.1016/j.ijbiomac.2021.07.107
  21. Gregoriadis G, Fernandes A, Mital M, McCormack B. Polysialic acids: potential in improving the stability and pharmacokinetics of proteins and other therapeutics. Cellular and Molecular Life Sciences. 2000;57(13-14):1964–1969. doi: 10.1007/PL00000676
  22. Monajati M, Tamaddon AM, Abolmaali SS, et al. L-asparaginase immobilization in supramolecular nanogels of PEG-grafted poly HPMA and bis(alpha-cyclodextrin) to enhance pharmacokinetics and lower enzyme antigenicity. Colloids Surf B Biointerfaces. 2023;225:113234. doi: 10.1016/j.colsurfb.2023.113234
  23. Lorenzi PL, Reinhold WC, Rudelius M, et al. Asparagine synthetase as a causal, predictive biomarker for L-asparaginase activity in ovarian cancer cells. Molecular Cancer Therapeutics. 2006;5(11):2613–2623. doi: 10.1158/1535-7163.MCT-06-0447
  24. Lorenzi PL, Llamas J, Gunsior M, et al. Asparagine synthetase is a predictive biomarker of L-asparaginase activity in ovarian cancer cell lines. Molecular Cancer Therapeutics. 2008;7(10):3123–3128. doi: 10.1158/1535-7163.MCT-08-0589
  25. Dufour E, Gay F, Aguera K, et al. Pancreatic tumor sensitivity to plasma L-asparagine starvation. Pancreas. 2012;41(6):940–948. doi: 10.1097/MPA.0b013e318247d903
  26. Panosyan EH, Wang Y, Xia P, et al. Asparagine depletion potentiates the cytotoxic effect of chemotherapy against brain tumors. Molecular Cancer Research. 2014;12(5):694–702. doi: 10.1158/1541-7786.MCR-13-0576
  27. Karpel-Massler G, Ramani D, Shu C, et al. Metabolic reprogramming of glioblastoma cells by L-asparaginase sensitizes for apoptosis in vitro and in vivo. Oncotarget. 2016;7(23):33512–33528. doi: 10.18632/oncotarget.9257
  28. Okuda K, Umemura A, Kataoka S, et al. Enhanced Antitumor Effect in Liver Cancer by Amino Acid Depletion-Induced Oxidative Stress. Frontiers in Oncology. 2021;11:758549. doi: 10.3389/fonc.2021.758549
  29. Zhang B, Dong LW, Tan YX, et al. Asparagine synthetase is an independent predictor of surgical survival and a potential therapeutic target in hepatocellular carcinoma. British Journal of Cancer. 2013;109(1):14–23. doi: 10.1038/bjc.2013.293
  30. Alexander P, Fairley GH, Hunter-Craig ID, et al. Inhibitation by L-asparaginase from E. coli of human malignant melanoma cells growing in vitro. Recent Results in Cancer Research. 1970;33:151–154. doi: 10.1007/978-3-642-99984-0_17
  31. Abakumova OYu, Podobed OV, Borisova AA, et al. Antitumor activity of L-asparaginase from Yersinia pseudotuberculosis. Biomeditsinskaya Khimiya. 2008;54(6):712–719. (In Russ).
  32. Wu MC, Arimura GK, Yunis AA. Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase. International Journal of Cancer. 1978;22(6):728–733. doi: 10.1002/ijc.2910220615
  33. Darwesh DB, Al-Awthan YS, Elfaki I, et al. Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei. Journal of Microbiology and Biotechnology. 2022;32(5):551–563. doi: 10.4014/jmb.2112.12050
  34. Saeed H, Hemida A, Abdel-Fattah M, et al. Pseudomonas aeruginosa recombinant L-asparaginase: Large scale production, purification, and cytotoxicity on THP-1, MDA-MB-231, A549, Caco2 and HCT-116 cell lines. Protein Expression and Purification. 2021;181:105820. doi: 10.1016/j.pep.2021.105820
  35. Cappelletti D, Chiarelli LR, Pasquetto MV, et al. Helicobacter pyloril-asparaginase: a promising chemotherapeutic agent. Biochemical and Biophysical Research Communications. 2008;377(4):1222–1226. doi: 10.1016/j.bbrc.2008.10.118
  36. El-Naggar NE, El-Shweihy NM. Bioprocess development for L-asparaginase production by Streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines. Scientific Reports. 2020;10(1):7942. doi: 10.1038/s41598-020-64052-x
  37. Abd El-Baky HH, El-Baroty GS. Spirulina maxima L-asparaginase: Immobilization, Antiviral and Antiproliferation Activities. Recent Patents on Biotechnology. 2020;14(2):154–163. doi: 10.2174/1872208313666191114151344
  38. Alrumman SA, Mostafa YS, Al-Izran KA, et al. Production and Anticancer Activity of an L-Asparaginase from Bacillus licheniformis Isolated from the Red Sea, Saudi Arabia. Scientific Reports. 2019;9(1):3756. doi: 10.1038/s41598-019-40512-x
  39. Nadeem MS, Khan JA, Al-Ghamdi MA, et al. Studies on the recombinant production and anticancer activity of thermostable L-asparaginase I from Pyrococcus abyssi. Brazilian Journal of Biology. 2021;82:e244735. doi: 10.1590/1519-6984.244735
  40. Saeed H, Hemida A, El-Nikhely N, et al. Highly efficient Pyrococcus furiosus recombinant L-asparaginase with no glutaminase activity: Expression, purification, functional characterization, and cytotoxicity on THP-1, A549 and Caco-2 cell lines. International Journal of Biological Macromolecules. 2020;156:812–828. doi: 10.1016/j.ijbiomac.2020.04.080
  41. El-Ghonemy DH, Ali SA, Abdel-Megeed RM, Elshafei AM. Therapeutic impact of purified Trichoderma viride L-asparaginase in murine model of liver cancer and in vitro Hep-G2 cell line. Journal of Genetic Engineering and Biotechnology. 2023;21(1):38. doi: 10.1186/s43141-023-00493-x
  42. Yap LS, Lee WL, Ting ASY. Bioprocessing and purification of extracellular L-asparaginase produced by endophytic Colletotrichum gloeosporioides and its anticancer activity. Preparative Biochemistry & Biotechnology. 2022;53(6):653–671. doi: 10.1080/10826068.2022.2122064
  43. Othman SI, Mekawey AAI, El-Metwally MM, et al. Rhizopus oryzae AM16; a new hyperactive L-asparaginase producer: Semi solid-state production and anticancer activity of the partially purified protein. Biomed Rep. 2022;16(3):15. doi: 10.3892/br.2022.1498
  44. El-Gendy M, Awad MF, El-Shenawy FS, El-Bondkly AMA. Production, purification, characterization, antioxidant and antiproliferative activities of extracellular L-asparaginase produced by Fusarium equiseti AHMF4. Saudi Journal of Biological Sciences. 2021;28(4):2540–2548. doi: 10.1016/j.sjbs.2021.01.058
  45. Chen Q, Ye L, Fan J, et al. Autophagy suppression potentiates the anti-glioblastoma effect of asparaginase in vitro and in vivo. Oncotarget. 2017;8(53):91052–91066. doi: 10.18632/oncotarget.19409
  46. Chiu M, Tardito S, Pillozzi S, et al. Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts. British Journal of Cancer. 2014;111(6):1159–1167. doi: 10.1038/bjc.2014.425
  47. Nishikawa G, Kawada K, Hanada K, et al. Targeting Asparagine Synthetase in Tumorgenicity Using Patient-Derived Tumor-Initiating Cells. Cells. 2022;11(20). doi: 10.3390/cells11203273
  48. Toda K, Kawada K, Iwamoto M, et al. Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase. Neoplasia. 2016;18(11):654–665. doi: 10.1016/j.neo.2016.09.004
  49. Yap HY, Benjamin RS, Blumenschein GR, et al. Phase II study with sequential L-asparaginase and methotrexate in advanced refractory breast cancer. Cancer Treat Rep. 1979;63(1):77–83.
  50. Hortobagyi GN, Yap HY, Wiseman CL, et al. Chemoimmunotherapy for metastatic breast cancer with 5-fluorouracil, adriamycin, cyclophosphamide, methotrexate, L-asparaginase, Corynebacterium parvum, and Pseudomonas vaccine. Cancer Treat Rep. 1980;64(1):157–159.
  51. Taylor CW, Dorr RT, Fanta P, et al. A phase I and pharmacodynamic evaluation of polyethylene glycol-conjugated L-asparaginase in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2001;47(1):83–88. doi: 10.1007/s002800000207
  52. Bachet JB, Gay F, Marechal R, et al. Asparagine Synthetase Expression and Phase I Study With L-Asparaginase Encapsulated in Red Blood Cells in Patients With Pancreatic Adenocarcinoma. Pancreas. 2015;44(7):1141–1147. doi: 10.1097/MPA.0000000000000394
  53. Hammel P, Fabienne P, Mineur L, et al. Erythrocyte-encapsulated asparaginase (eryaspase) combined with chemotherapy in second-line treatment of advanced pancreatic cancer: An open-label, randomized Phase IIb trial. European Journal of Cancer. 2020;124:91–101. doi: 10.1016/j.ejca.2019.10.020
  54. Hermanova I, Arruabarrena-Aristorena A, Valis K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30(1):209–218. doi: 10.1038/leu.2015.213
  55. Pokrovskaya MV, Zhdanov DD, Eldarov MA, et al. Suppression of telomerase activity leukemic cells by mutant forms of Rhodospirillum rubrum L-asparaginase. Biomeditsinskaya Khimiya. 2017;63(1):62–74. (In Russ). doi: 10.18097/PBMC20176301062
  56. Zhdanov DD, Pokrovsky VS, Pokrovskaya MV, et al. Rhodospirillum rubruml-asparaginase targets tumor growth by a dual mechanism involving telomerase inhibition. Biochemical and Biophysical Research Communications. 2017;492(2):282–288. doi: 10.1016/j.bbrc.2017.08.078
  57. Zhdanov DD, Pokrovsky VS, Pokrovskaya MV, et al. Inhibition of telomerase activity and induction of apoptosis by Rhodospirillum rubrum L-asparaginase in cancer Jurkat cell line and normal human CD4+ T lymphocytes. Cancer Med. 2017;6(11):2697–2712. doi: 10.1002/cam4.1218
  58. Plyasova AA, Pokrovskaya MV, Lisitsyna OM, et al. Penetration into Cancer Cells via Clathrin-Dependent Mechanism Allows L-Asparaginase from Rhodospirillum rubrum to Inhibit Telomerase. Pharmaceuticals (Basel). 2020;13(10). doi: 10.3390/ph13100286
  59. Balasubramanian MN, Butterworth EA, Kilberg MS. Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab. 2013;304(8):E789–799. doi: 10.1152/ajpendo.00015.2013
  60. Kilberg MS, Balasubramanian M, Fu L, Shan J. The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr. 2012;3(3):295–306. doi: 10.3945/an.112.001891
  61. Ren Y, Roy S, Ding Y, et al. Methylation of the asparagine synthetase promoter in human leukemic cell lines is associated with a specific methyl binding protein. Oncogene. 2004;23(22):3953–3961. doi: 10.1038/sj.onc.1207498
  62. Jiang J, Srivastava S, Seim G, et al. Promoter demethylation of the asparagine synthetase gene is required for ATF4-dependent adaptation to asparagine depletion. J Biol Chem. 2019;294(49):18674–18684. doi: 10.1074/jbc.RA119.010447
  63. Akahane K, Kimura S, Miyake K, et al. Association of allele-specific methylation of the ASNS gene with asparaginase sensitivity and prognosis in T-ALL. Blood Adv. 2022;6(1):212–224. doi: 10.1182/bloodadvances.2021004271
  64. Touzart A, Lengline E, Latiri M, et al. Epigenetic Silencing Affects l-Asparaginase Sensitivity and Predicts Outcome in T-ALL. Clin Cancer Res. 2019;25(8):2483–2493. doi: 10.1158/1078-0432.CCR-18-1844
  65. Fruman DA, Chiu H, Hopkins BD, et al. The PI3K Pathway in Human Disease. Cell. 2017;170(4):605–635. doi: 10.1016/j.cell.2017.07.029
  66. Hlozkova K, Pecinova A, Alquezar-Artieda N, et al. Metabolic profile of leukemia cells influences treatment efficacy of L-asparaginase. BMC Cancer. 2020;20(1):526. doi: 10.1186/s12885-020-07020-y
  67. Martelli AM, Paganelli F, Fazio A, et al. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers (Basel). 2019;11(5). doi: 10.3390/cancers11050629
  68. Hlozkova K, Hermanova I, Safrhansova L, et al. PTEN/PI3K/Akt pathway alters sensitivity of T-cell acute lymphoblastic leukemia to L-asparaginase. Scientific Reports. 2022;12(1):4043. doi: 10.1038/s41598-022-08049-8
  69. Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10(1):51–64. doi: 10.1016/j.ccr.2006.06.001
  70. Garcia Ruiz O, Sanchez-Maldonado JM, Lopez-Nevot MA, et al. Autophagy in Hematological Malignancies. Cancers (Basel). 2022;14(20). doi: 10.3390/cancers14205072
  71. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–752. doi: 10.1038/nrm2239
  72. Ajoolabady A, Aghanejad A, Bi Y, et al. Enzyme-based autophagy in anti-neoplastic management: From molecular mechanisms to clinical therapeutics. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188366. doi: 10.1016/j.bbcan.2020.188366
  73. Polak R, Bierings MB, van der Leije CS, et al. Autophagy inhibition as a potential future targeted therapy for ETV6-RUNX1-driven B-cell precursor acute lymphoblastic leukemia. Haematologica. 2019;104(4):738–748. doi: 10.3324/haematol.2018.193631
  74. Takahashi H, Inoue J, Sakaguchi K, et al. Autophagy is required for cell survival under L-asparaginase-induced metabolic stress in acute lymphoblastic leukemia cells. Oncogene. 2017;36(30):4267–4276. doi: 10.1038/onc.2017.59
  75. Chiu M, Franchi-Gazzola R, Bussolati O, et al. Asparagine levels in the bone marrow of patients with acute lymphoblastic leukemia during asparaginase therapy. Pediatr Blood Cancer. 2013;60(11):1915. doi: 10.1002/pbc.24663
  76. Iwamoto S, Mihara K, Downing JR, et al. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest. 2007;117(4):1049–1057. doi: 10.1172/JCI30235
  77. Steiner M, Hochreiter D, Kasper DC, et al. Asparagine and aspartic acid concentrations in bone marrow versus peripheral blood during Berlin-Frankfurt-Munster-based induction therapy for childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(9):1682–1687. doi: 10.3109/10428194.2012.668681
  78. Kang SM, Rosales JL, Meier-Stephenson V, et al. Genome-wide loss-of-function genetic screening identifies opioid receptor mu1 as a key regulator of L-asparaginase resistance in pediatric acute lymphoblastic leukemia. Oncogene. 2017;36(42):5910–5913. doi: 10.1038/onc.2017.211
  79. Lee JK, Kang S, Wang X, et al. HAP1 loss confers l-asparaginase resistance in ALL by downregulating the calpain-1-Bid-caspase-3/12 pathway. Blood. 2019;133(20):2222–2232. doi: 10.1182/blood-2018-12-890236
  80. Hinze L, Pfirrmann M, Karim S, et al. Synthetic Lethality of Wnt Pathway Activation and Asparaginase in Drug-Resistant Acute Leukemias. Cancer Cell. 2019;35(4):664–676 e7. doi: 10.1016/j.ccell.2019.03.004
  81. Li H, Ning S, Ghandi M, et al. The landscape of cancer cell line metabolism. Nat Med. 2019;25(5):850–860. doi: 10.1038/s41591-019-0404-8
  82. Lin CY, Sheu MJ, Li CF, et al. Deficiency in asparagine synthetase expression in rectal cancers receiving concurrent chemoradiotherapy: negative prognostic impact and therapeutic relevance. Tumour Biol. 2014;35(7):6823–6830. doi: 10.1007/s13277-014-1895-z
  83. Fang K, Chu Y, Zhao Z, et al. Enhanced expression of asparagine synthetase under glucose-deprived conditions promotes esophageal squamous cell carcinoma development. Int J Med Sci. 2020;17(4):510–516. doi: 10.7150/ijms.39557
  84. Yu Q, Wang X, Wang L, et al. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells. Scand J Gastroenterol. 2016;51(10):1220–1226. doi: 10.1080/00365521.2016.1190399
  85. Yang H, He X, Zheng Y, et al. Down-regulation of asparagine synthetase induces cell cycle arrest and inhibits cell proliferation of breast cancer. Chem Biol Drug Des. 2014;84(5):578–584. doi: 10.1111/cbdd.12348
  86. Sircar K, Huang H, Hu L, et al. Integrative molecular profiling reveals asparagine synthetase is a target in castration-resistant prostate cancer. Am J Pathol. 2012;180(3):895–903. doi: 10.1016/j.ajpath.2011.11.030
  87. Li H, Zhou F, Du W, et al. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells. Biotechnol Appl Biochem. 2016;63(3):328–333. doi: 10.1002/bab.1383
  88. Apfel V, Begue D, Cordo V, et al. Therapeutic Assessment of Targeting ASNS Combined with l-Asparaginase Treatment in Solid Tumors and Investigation of Resistance Mechanisms. ACS Pharmacol Transl Sci. 2021;4(1):327–337. doi: 10.1021/acsptsci.0c00196

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mechanisms of the antitumor action of L-asparaginase (L-ASNase).

Download (229KB)
3. Fig. 2. Involvement of PTEN in the PI3K–Akt–mTOR signaling pathway.

Download (235KB)
4. Fig. 3. Inhibition of GSK3 (glycogen synthase kinase 3) sensitizes leukemic cells to the action of asparaginase.

Download (1MB)

Copyright (c) 2023 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».