Белки семейства клаудинов и их роль в патогенезе и терапии злокачественных новообразований: состояние проблемы и перспективы
- Авторы: Бойчук С.В.1,2,3, Бикиниева Ф.Ф.1, Копнин П.Б.4
-
Учреждения:
- Казанский государственный медицинский университет
- Институт фундаментальной медицины и биологии Казанского (Приволжского) федерального университета
- Российская медицинская академия непрерывного профессионального образования
- Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина
- Выпуск: Том 29, № 3 (2024)
- Страницы: 258-277
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/1028-9984/article/view/313531
- DOI: https://doi.org/10.17816/onco636917
- ID: 313531
Цитировать
Аннотация
В данном обзоре представлены сведения о белках плотных межклеточных контактов клаудинах и их роли в патогенезе и терапии злокачественных новообразований. Особое внимание уделяется изменениям уровней их экспрессии, а также внутриклеточной локализации в опухолях и прогностической значимости таких изменений при онкологических заболеваниях. Отмечена роль клаудинов в процессе метастазирования, инвазии и устойчивости опухолевых клеток к лекарственной терапии. Также обсуждаются перспективы использования клаудинов в качестве потенциальных мишеней для разработки новых методов диагностики и лечения злокачественных новообразований.
Полный текст
Открыть статью на сайте журналаОб авторах
Сергей Васильевич Бойчук
Казанский государственный медицинский университет; Институт фундаментальной медицины и биологии Казанского (Приволжского) федерального университета; Российская медицинская академия непрерывного профессионального образования
Автор, ответственный за переписку.
Email: boichuksergei@mail.ru
ORCID iD: 0000-0003-2415-1084
SPIN-код: 8058-6246
д-р мед. наук, профессор
Россия, Казань; Казань; МоскваФирюза Фанисовна Бикиниева
Казанский государственный медицинский университет
Email: firuza1995@mail.ru
ORCID iD: 0000-0002-9012-6525
SPIN-код: 9014-1478
канд. мед. наук
Россия, КазаньПавел Борисович Копнин
Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина
Email: pbkopnin@mail.ru
ORCID iD: 0000-0002-2078-4274
SPIN-код: 2339-5729
канд. биолог. наук
Россия, МоскваСписок литературы
- Mineta K., Yamamoto Y., Yamazaki Y., et al. Predicted expansion of the claudin multigene family // FEBS Lett. 2011. Vol. 585, N 4. P. 606–612. doi: 10.1016/j.febslet.2011.01.028
- Blackman B., Russell T., Nordeen S., et al. Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors // Breast Cancer Res. 2005. Vol. 7. P. 1–8. doi: 10.1186/bcr988
- Van Itallie C., Anderson J. Claudin interactions in and out of the tight junction // Tissue barriers. 2013. Vol. 1, N 3. P. e25247. doi: 10.4161/tisb.25247
- Li J. Context-dependent roles of claudins in tumorigenesis // Front Oncol. 2021. Vol. 11. P. 676781. doi: 10.3389/fonc.2021.676781
- Wang D., Zhang W., Galiullin D., et al. The role and mechanism of claudins in cancer // Front Oncol. 2022. Vol. 12. P. 1051497. doi: 10.3389/fonc.2022.1051497
- Pacheco A., Carretero L., Torres C., et al. NISCH syndrome: An extremely rare cause of neonatal cholestasis // J Hepatol. 2020. Vol. 73, N 5. P. 1257–1258. doi: 10.1016/j.jhep.2020.07.006
- Sakai N., Chiba H., Fujita H., et al. Expression patterns of claudin family of tight-junction proteins in the mouse prostate // Histochem Cell Biol. 2007. Vol. 127. P. 457–462. doi: 10.1007/s00418-007-0269-7
- Sladojevic N., Stamatovic S., Johnson A., et al. Claudin-1-dependent destabilization of the blood–brain barrier in chronic stroke // J Neurosci. 2019. Vol. 39, N 4. P. 743–757. doi: 10.1523/JNEUROSCI.1432-18.2018
- Bergmann S., Buenau B., Vidal-Y-Sy S., et al. Claudin-1 decrease impacts epidermal barrier function in atopic dermatitis lesions dose-dependently // Sci Rep. 2020. Vol. 10, N 1. P. 2024. doi: 10.1038/s41598-020-58718-9
- Iida M., Ohtomo S., Wada N., et al. TNF-α induces Claudin-1 expression in renal tubules in Alport mice // PLoS One. 2022. Vol. 17, N 3. P. e0265081. doi: 10.1371/journal.pone.0265081
- Singh A., Sharma A., Smith J., et al. Claudin-1 up-regulates the repressor ZEB-1 to inhibit E-cadherin expression in colon cancer cells // Gastroenterology. 2011. Vol. 141, N 6. P. 2140–2153. doi: 10.1053/j.gastro.2011.08.038
- Dhawan P., Singh A., Deane N., et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer // J Clin Invest. 2005. Vol. 115, N 7. P. 1765–1776. doi: 10.1172/JCI24543
- Yamamoto D., Kayamori K., Sakamoto K., et al. Intracellular claudin-1 at the invasive front of tongue squamous cell carcinoma is associated with lymph node metastasis // Cancer Sci. 2020. Vol. 111, N 2. P. 700–712. doi: 10.1111/cas.14249
- Elsayed A., Mahmoud E., Salem M., et al. Immunohistochemical Expression of Claudin-1 and Claudin-4 in Urothelial Carcinoma of the Urinary Bladder // Asian Pac J Cancer Prev. 2024. Vol. 25, N 2. P. 637–646. doi: 10.31557/APJCP.2024.25.2.637
- Ouban A., Ameer O., Quek K., et al. Detection of Increased Expression of Claudin-1 in Triple-Negative Breast Cancer: Analysis and Clinical-Pathological Correlation // Cureus. 2023. Vol. 15, N 3. P. e36648. doi: 10.7759/cureus.36648
- Zhou B., Moodie A., Blanchard A., et al. Claudin 1 in breast cancer: new insights // J Clin Med. 2015. Vol. 4, N 12. P. 1960–1976. doi: 10.3390/jcm4121952
- Miskad U., Aswidah A., Dahlan H., et al. The Role of Claudin-1 Expression in Follicular and Papillary Thyroid Neoplasm // Asian Pac J Cancer Prev. 2022. Vol. 23, N 12. P. 4023–4027. doi: 10.31557/APJCP.2022.23.12.4023
- Leotlela P., Wade M., Duray P., et al. Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility // Oncogene. 2007. Vol. 26, N 26. P. 3846–3856. doi: 10.1038/sj.onc.1210155
- English D., Santin A. Claudins overexpression in ovarian cancer: potential targets for Clostridium Perfringens Enterotoxin (CPE) based diagnosis and therapy // Int J Mol Sci. 2013. Vol. 14, N 5. P. 10412–10437. doi: 10.3390/ijms140510412
- Tsukahara M., Nagai H., Kamiakito T., et al. Distinct expression patterns of claudin-1 and claudin-4 in intraductal papillary-mucinous tumors of the pancreas // Pathol Int. 2005. Vol. 55, N 2. P. 63–69. doi: 10.1111/j.1440-1827.2005.01793.x
- Väre P., Loikkanen I., Hirvikoski P., et al. Low claudin expression is associated with high Gleason grade in prostate adenocarcinoma // Oncol Rep. 2008. Vol. 19, N 1. P. 25–31.
- Higashi Y., Suzuki S., Sakaguchi T., et al. Loss of claudin-1 expression correlates with malignancy of hepatocellular carcinoma // J Surg Res. 2007. Vol. 139, N 1. P. 68–76. doi: 10.1016/j.jss.2006.08.038
- Paschoud S., Bongiovanni M., Pache J., Citi S. Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas // Mod Pathol. 2007. Vol. 20, N 9. P. 947–954. doi: 10.1038/modpathol.3800835
- Stebbing J., Filipovic A., Giamas G. Claudin-1 as a promoter of EMT in hepatocellular carcinoma // Oncogene. 2013. Vol. 32, N 41. P. 4871–4872. doi: 10.1038/onc.2012.591
- Suh Y., Yoon C.-H., Kim R.-K., et al. Claudin-1 induces epithelial–mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells // Oncogene. 2013. Vol. 32, N 41. P. 4873–4882. doi: 10.1038/onc.2012.505
- Fortier A., Asselin E., Cadrin M. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation // J Biol Chem. ASBMB, 2013. Vol. 288, N 16. P. 11555–11571. doi: 10.1074/jbc.M112.428920
- Giampieri S., Manning C., Hooper S., et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility // Nat Cell Biol. 2009. Vol. 11, N 11. P. 1287–1296. doi: 10.1038/ncb1973
- Aimes R., Quigley J. Matrix metalloproteinase-2 is an interstitial collagenase: inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type i collagen generating the specific ¾-and ¼-length fragments (*) // J Biol Chem. 1995. Vol. 270, N 11. P. 5872–5876. doi: 10.1074/jbc.270.11.5872
- Oku N., Sasabe E., Ueta E., et al. Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 γ2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1 // Cancer Res. 2006. Vol. 66, N 10. P. 5251–5257. doi: 10.1158/0008-5472.CAN-05-4478
- Miyamori H., Takino T., Kobayashi Y., et al. Claudin promotes activation of pro-matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases // J Biol Chem. 2001. Vol. 276, N 30. P. 28204–28211. doi: 10.1074/jbc.M103083200
- Pope J., Ahmad R., Bhat A., et al. Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis // Mol Cancer. 2014. Vol. 13. P. 1–13. doi: 10.1186/1476-4598-13-167
- Venugopal S., Anwer S., Szászi K. Claudin-2: Roles beyond Permeability Functions // Int J Mol Sci. 2019. Vol. 20, N 22. doi: 10.3390/ijms20225655
- Barrett K. Claudin-2 pore causes leak that breaches the dam in intestinal inflammation // J Clin Invest. 2020. Vol. 130, N 10. P. 5100–5101. doi: 10.1172/JCI140528
- Oami T., Abtahi S., Shimazui T., et al. Claudin-2 upregulation enhances intestinal permeability, immune activation, dysbiosis, and mortality in sepsis // Proc Natl Acad Sci. U. S. A. 2024. Vol. 121, N 10. P. e2217877121. doi: 10.1073/pnas.2217877121
- Beggs M., Young K., Pan W., et al. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis // Proc Natl Acad Sci. 2021. Vol. 118, N 48. P. e2111247118. doi: 10.1073/pnas.2111247118
- Curry J., Saurette M., Askari M., et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease // J Clin Invest. 2020. Vol. 130, N 4. P. 1948–1960. doi: 10.1172/JCI127750
- Tabaries S., Annis M., Lazaris A., et al. Claudin-2 promotes colorectal cancer liver metastasis and is a biomarker of the replacement type growth pattern // Commun Biol. 2021. Vol. 4, N 1. P. 657. doi: 10.1038/s42003-021-02189-9
- Aung P., Mitani Y., Sanada Y., et al. Differential expression of claudin-2 in normal human tissues and gastrointestinal carcinomas // Virchows Arch. 2006. Vol. 448. P. 428–434. doi: 10.1007/s00428-005-0120-2
- Dhawan P., Ahmad R., Chaturvedi R., et al. Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation // Oncogene. 2011. Vol. 30, N 29. P. 3234–3247. doi: 10.1038/onc.2011.43
- Kinugasa T., Huo Q., Higashi D., et al. Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer // Anticancer Res. 2007. Vol. 27, N 6A. P. 3729–3734.
- Jung H., Jun K., Jung J., et al. The expression of claudin-1, claudin-2, claudin-3, and claudin-4 in gastric cancer tissue // J Surg Res. Elsevier, 2011. Vol. 167, N 2. P. e185–e191. doi: 10.1016/j.jss.2010.02.010
- Soini Y. Claudins 2, 3, 4, and 5 in Paget’s disease and breast carcinoma // Hum Pathol. 2004. Vol. 35, N 12. P. 1531–1536. doi: 10.1016/j.humpath.2004.09.015
- Szász A., Tokes A., Micsinai M., et al. Prognostic significance of claudin expression changes in breast cancer with regional lymph node metastasis // Clin Exp Metastasis. 2011. Vol. 28. P. 55–63. doi: 10.1007/s10585-010-9357-5
- Kim T., Huh J., Lee S., et al. Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease // Histopathology. 2008. Vol. 53, N 1. P. 48–55. doi: 10.1111/j.1365-2559.2008.03052.x
- Kimbung S., Kovacs A., Bendahl P., et al. Claudin-2 is an independent negative prognostic factor in breast cancer and specifically predicts early liver recurrences // Mol Oncol. 2014. Vol. 8, N 1. P. 119–128. doi: 10.1016/j.molonc.2013.10.002
- Tabaries S., Dong Z., Annis M., et al. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes // Oncogene. 2011. Vol. 30, N 11. P. 1318–1328. doi: 10.1038/onc.2010.518
- Buchert M., Papin M., Bonnans C., et al. Symplekin promotes tumorigenicity by up-regulating claudin-2 expression // Proc Natl Acad Sci U S A. 2010. Vol. 107, N 6. P. 2628–2633. doi: 10.1073/pnas.0903747107
- Kaarteenaho-Wiik R., Soini Y. Claudin-1,− 2,− 3,− 4,− 5, and− 7 in usual interstitial pneumonia and sarcoidosis // J Histochem Cytochem. 2009. Vol. 57, N 3. P. 187–195. doi: 10.1369/jhc.2008.951566
- Hewitt K., Agarwal R., Morin P. The claudin gene family: expression in normal and neoplastic tissues // BMC Cancer. 2006. Vol. 6. P. 1–8. doi: 10.1186/1471-2407-6-186
- Kyuno D., Yamaguchi H., Ito T., et al. Targeting tight junctions during epithelial to mesenchymal transition in human pancreatic cancer // World J Gastroenterol. 2014. Vol. 20, N 31. P. 10813. doi: 10.3748/wjg.v20.i31.10813
- Milatz S., Krug S., Rosenthal R., et al. Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes // Biochim Biophys Acta. 2010. Vol. 1798, N 11. P. 2048–2057. doi: 10.1016/j.bbamem.2010.07.014
- Ahmad R., Kumar B., Thapa I., et al. Loss of claudin-3 expression increases colitis risk by promoting Gut Dysbiosis // Gut Microbes. 2023. Vol. 15, N 2. P. 2282789. doi: 10.1080/19490976.2023.2282789
- Zhu L., Han J., Li L., et al. Claudin family participates in the pathogenesis of inflammatory bowel diseases and colitis-associated colorectal cancer // Front Immunol. 2019. Vol. 10. P. 1441. doi: 10.3389/fimmu.2019.01441
- Orea M., Angulo J., Gonzalez-Corpas A., et al. Claudin-3 loss of expression is a prognostic marker in castration-resistant prostate cancer // Int J Mol Sci. 2023. Vol. 24, N 1. P. 803. doi: 10.3390/ijms24010803
- Yang G., Jian L., Chen Q. Comprehensive analysis of expression and prognostic value of the claudin family in human breast cancer // Aging (Albany NY). 2021. Vol. 13, N 6. P. 8777. doi: 10.18632/aging.202687
- Ren F., Zhao Q., Zhao M., et al. Immune infiltration profiling in gastric cancer and their clinical implications // Cancer Sci. 2021. Vol. 112, N 9. P. 3569–3584. doi: 10.1111/cas.15057
- Zhang Z., Yu W., Chen S., et al. Methylation of the claudin-3 promoter predicts the prognosis of advanced gastric adenocarcinoma // Oncol Rep. 2018. Vol. 40, N 1. P. 49–60. doi: 10.3892/or.2018.6411
- Matsuda Y., Semba S., Ueda J., et al. Gastric and intestinal claudin expression at the invasive front of gastric carcinoma // Cancer Sci. 2007. Vol. 98, N 7. P. 1014–1019. doi: 10.1111/j.1349-7006.2007.00490.x
- Koelink P., Overbeek S., Braber S., et al. Targeting chemokine receptors in chronic inflammatory diseases: an extensive review // Pharmacol Ther. 2012. Vol. 133, N 1. P. 1–18. doi: 10.1016/j.pharmthera.2011.06.008
- Ma L., Yin W., Ma H., et al. Targeting claudin-3 suppresses stem cell-like phenotype in nonsquamous non-small-cell lung carcinoma // Lung Cancer Manag. 2019. Vol. 8, N 1. P. LMT04. doi: 10.2217/lmt-2018-0010
- Jääskeläinen A., Soini Y., Jukkola-Vuorinen A., et al. High-level cytoplasmic claudin 3 expression is an independent predictor of poor survival in triple-negative breast cancer // BMC Cancer. 2018. Vol. 18. P. 1–10. doi: 10.1186/s12885-018-4141-z
- Chakraborty P., Buaas F., Sharma M., et al. Androgen-dependent sertoli cell tight junction remodeling is mediated by multiple tight junction components // Mol Endocrinol. 2014. Vol. 28, N 7. P. 1055–1072. doi: 10.1210/me.2013-1134
- Yuan M., Chen X., Sun Y., et al. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression // Acta Pharm. Sin. B. 2020. Vol. 10, N 8. P. 1426–1439. doi: 10.1016/j.apsb.2020.03.008
- de Mattos R., Kanno D., Campos F., et al. Tissue Content and Pattern of Expression of Claudin-3 and Occludin in Normal and Neoplastic Tissues in Patients with Colorectal Cancer // J Gastrointest Surg. 2022. Vol. 26, N 11. P. 2351–2353. doi: 10.1007/s11605-022-05362-5
- Lei N., Cheng Y., Wan J., et al. Claudin-3 inhibits tumor-induced lymphangiogenesis via regulating the PI3K signaling pathway in lymphatic endothelial cells // Sci Rep. 2022. Vol. 12, N 1. P. 17440. doi: 10.1038/s41598-022-22156-6
- Michikawa H., Fujita-Yoshigaki J., Sugiya H. Enhancement of barrier function by overexpression of claudin-4 in tight junctions of submandibular gland cells // Cell Tissue Res. 2008. Vol. 334, N 2. P. 255–264. doi: 10.1007/s00441-008-0689-2
- Hou J., Renigunta A., Yang J., Waldegger S. Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization // Proc Natl Acad Sci U S A. 2010. Vol. 107, N 42. P. 18010–18015. doi: 10.1073/pnas.1009399107
- Chen S., Zhou B., Willis B., et al. Effects of transdifferentiation and EGF on claudin isoform expression in alveolar epithelial cells // J Appl Physiol. 2005. Vol. 98, N 1. P. 322–328. doi: 10.1152/japplphysiol.00681.2004
- Kage H., Flodby P., Gao D., et al. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury // Am J Physiol Cell Mol Physiol. 2014. Vol. 307, N 7. P. L524–L536. doi: 10.1152/ajplung.00077.2014
- Kwon M., Kim S., Jeong H., et al. Claudin-4 overexpression is associated with epigenetic derepression in gastric carcinoma // Lab Invest. 2011. Vol. 91, N 11. P. 1652–1667. doi: 10.1038/labinvest.2011.117
- Lin X., Shang X., Manorek G., Howell S. Regulation of the epithelial-mesenchymal transition by claudin-3 and claudin-4 // PLoS One. 2013. Vol. 8, N 6. P. e67496. doi: 10.1371/journal.pone.0067496
- Hwang T., Changchien T., Wang C., Wu C. Claudin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and-9 expression // Oncol Lett. 2014. Vol. 8, N 3. P. 1367–1371. doi: 10.3892/ol.2014.2295
- Maeda T., Murata M., Chiba H., et al. Claudin-4-targeted therapy using Clostridium perfringens enterotoxin for prostate cancer // Prostate. 2012. Vol. 72, N 4. P. 351–360. doi: 10.1002/pros.21436
- Fujiwara-Tani R., Mori S., Ogata R., et al. Claudin-4: A New Molecular Target for Epithelial Cancer Therapy // Int J Mol Sci. 2023. Vol. 24, N 6. doi: 10.3390/ijms24065494
- Liu W., Li M. The role of claudin-4 in the development of gastric cancer // Scand J Gastroenterol. 2020. Vol. 55, N 9. P. 1072–1078. doi: 10.1080/00365521.2020.1795923
- Owari T., Sasaki T., Fujii K., et al. Role of nuclear claudin-4 in renal cell carcinoma // Int J Mol Sci. 2020. Vol. 21, N 21. P. 8340. doi: 10.3390/ijms21218340
- Nakashima C., Yamamoto K., Kishi S., et al. Clostridium perfringens enterotoxin induces claudin-4 to activate YAP in oral squamous cell carcinomas // Oncotarget. 2020. Vol. 11, N 4. P. 309–321. doi: 10.18632/oncotarget.27424
- Yamamoto T., Webb P., Davis D., et al. Loss of claudin-4 reduces DNA damage repair and increases sensitivity to PARP inhibitors // Mol Cancer Ther. 2022. Vol. 21, N 4. P. 647–657. doi: 10.1158/1535-7163.MCT-21-0827
- Michl P., Barth C., Buchholz M., et al. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer // Cancer Res. 2003. Vol. 63, N 19. P. 6265–6271.
- Lv J., Hu W., Yang Z., et al. Focusing on claudin-5: a promising candidate in the regulation of BBB to treat ischemic stroke // Prog Neurobiol. 2018. Vol. 161. P. 79–96. doi: 10.1016/j.pneurobio.2017.12.001
- Hashimoto Y., Campbell M., Tachibana K., et al. Claudin-5: a pharmacological target to modify the permeability of the blood–brain barrier // Biol Pharm Bull. 2021. Vol. 44, N 10. P. 1380–1390. doi: 10.1248/bpb.b21-00408
- Geng P., Yu F., Tan D., et al. Involvement of claudin-5 in H2S-induced acute lung injury // J Toxicol Sci. 2020. Vol. 45, N 5. P. 293–304. doi: 10.2131/jts.45.293
- Wang M., Guo J., Zhao Y.-Q., Wang J.-P. IL-21 mediates microRNA-423-5p/claudin-5 signal pathway and intestinal barrier function in inflammatory bowel disease // Aging (Albany NY). 2020. Vol. 12, N 16. P. 16099. doi: 10.18632/aging.103566
- Luo T., Liu H., Chen B., et al. A novel role of claudin-5 in prevention of mitochondrial fission against ischemic/hypoxic stress in cardiomyocytes // Can J Cardiol. 2021. Vol. 37, N 10. P. 1593–1606. doi: 10.1016/j.cjca.2021.03.021
- Molins B., Mora A., Romero-Vazquez S., et al. Shear stress modulates inner blood retinal barrier phenotype // Exp Eye Res. 2019. Vol. 187. P. 107751. doi: 10.1016/j.exer.2019.107751
- Someya H., Ito M., Nishio Y., et al. Osteopontin-induced vascular hyperpermeability through tight junction disruption in diabetic retina // Exp Eye Res. 2022. Vol. 220. P. 109094. doi: 10.1016/j.exer.2022.109094
- Escudero-Esparza A., Jiang W., Martin T. Claudin-5 is involved in breast cancer cell motility through the N-WASP and ROCK signalling pathways // J Exp Clin Cancer Res. 2012. Vol. 31. P. 1–18. doi: 10.1186/1756-9966-31-43
- Huang S., Zhang J., Li Y., et al. Downregulation of Claudin5 promotes malignant progression and radioresistance through Beclin1-mediated autophagy in esophageal squamous cell carcinoma // J Transl Med. 2023. Vol. 21, N 1. P. 379. doi: 10.1186/s12967-023-04248-7
- Nissi R., Talvensaari-Mattila A., Kuvaja P., et al. Claudin-5 is associated with elevated TATI and CA125 levels in mucinous ovarian borderline tumors // Anticancer Res. 2015. Vol. 35, N 2. P. 973–976.
- Ma S., Li Q., Peng J., et al. Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis // CNS Neurosci Ther. 2017. Vol. 23, N 12. P. 947–960. doi: 10.1111/cns.12764
- Sakaguchi T., Suzuki S., Higashi H., et al. Expression of tight junction protein claudin-5 in tumor vessels and sinusoidal endothelium in patients with hepatocellular carcinoma // J Surg Res. 2008. Vol. 147, N 1. P. 123–131. doi: 10.1016/j.jss.2007.07.013
- Brinch M., Hatt L., Singh R., et al. Identification of circulating fetal cell markers by microarray analysis // Prenat Diagn. 2012. Vol. 32, N 8. P. 742–751. doi: 10.1002/pd.3894
- Zhang C., Guo C., Li Y., et al. Identification of claudin-6 as a molecular biomarker in pan-cancer through multiple omics integrative analysis // Front Cell Dev Biol. 2021. Vol. 9. P. 726656. doi: 10.3389/fcell.2021.726656
- Reinhard K., Rengstl B., Oehm P., et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors // Science. 2020. Vol. 367, N 6476. P. 446–453. doi: 10.1126/science.aay5967
- Stadler C., Bähr-Mahmud H., Plum L., et al. Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the oncofetal protein claudin 6 // Oncoimmunology. 2016. Vol. 5, N 3. P. e1091555. doi: 10.1080/2162402X.2015.1091555
- Simon A., Lyu S., Laible M., et al. The tight junction protein claudin 6 is a potential target for patient-individualized treatment in esophageal and gastric adenocarcinoma and is associated with poor prognosis // J Transl Med. 2023. Vol. 21, N 1. P. 552. doi: 10.1186/s12967-023-04433-8
- Zavala-Zendejas V., Torres-Martinez A., Salas-Morales B., et al. Claudin-6, 7, or 9 overexpression in the human gastric adenocarcinoma cell line AGS increases its invasiveness, migration, and proliferation rate // Cancer Invest. 2011. Vol. 29, N 1. P. 1–11. doi: 10.3109/07357907.2010.512594
- Yu S., Zhang Y., Li Q., et al. CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer // Cell Death Dis. 2019. Vol. 10, N 12. P. 949. doi: 10.1038/s41419-019-2168-y
- Huang L., Zhao C., Sun K., et al. Downregulation of CLDN6 inhibits cell proliferation, migration, and invasion via regulating EGFR/AKT/mTOR signalling pathway in hepatocellular carcinoma // Cell Biochem Funct. 2020. Vol. 38, N 5. P. 541–548. doi: 10.1002/cbf.3489
- Jia H., Chai X., Li S., et al. Identification of claudin-2,-6,-11 and-14 as prognostic markers in human breast carcinoma // Int J Clin Exp Pathol. 2019. Vol. 12, N 6. P. 2195.
- Kohmoto T., Masuda K., Shoda K., et al. Claudin-6 is a single prognostic marker and functions as a tumor-promoting gene in a subgroup of intestinal type gastric cancer // Gastric Cancer. 2020. Vol. 23. P. 403–417. doi: 10.1007/s10120-019-01014-x
- Gao F., Li M., Xiang R., et al. Expression of CLDN6 in tissues of gastric cancer patients: Association with clinical pathology and prognosis // Oncol Lett. 2019. Vol. 17, N 5. P. 4621–4625. doi: 10.3892/ol.2019.10129
- Lu Y.-Z., Li Y., Zhang T., Han S.-T. Claudin-6 is down-regulated in gastric cancer and its potential pathway // Cancer Biomark. 2020. Vol. 28, N 3. P. 329–340. doi: 10.3233/CBM-201554
- Ren Y., Wu Q., Liu Y., et al. Gene silencing of claudin-6 enhances cell proliferation and migration accompanied with increased MMP-2 activity via p38 MAPK signaling pathway in human breast epithelium cell line HBL-100 // Mol Med Rep. 2013. Vol. 8, N 5. P. 1505–1510. doi: 10.3892/mmr.2013.1675
- Ding L., Lu Z., Foreman O., et al. Inflammation and disruption of the mucosal architecture in claudin-7–deficient mice // Gastroenterology. 2012. Vol. 142, N 2. P. 305–315.
- Xing T., Camacho Salazar R., Chen Y.-H. Animal models for studying epithelial barriers in neonatal necrotizing enterocolitis, inflammatory bowel disease and colorectal cancer // Tissue Barriers. 2017. Vol. 5, N 4. P. e1356901. doi: 10.1080/21688370.2017.1356901
- Xiao Y., Lian H., Zhong X., et al. Matrix metalloproteinase 7 contributes to intestinal barrier dysfunction by degrading tight junction protein Claudin-7 // Front Immunol. 2022. Vol. 13. P. 1020902. doi: 10.3389/fimmu.2022.1020902
- Xing T., Benderman L., Sabu S., et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation // Cell Mol Gastroenterol Hepatol. 2020. Vol. 9, N 4. P. 641–659.
- Bernardi M., Logullo A., Pasini F., et al. Prognostic significance of CD24 and claudin-7 immunoexpression in ductal invasive breast cancer // Oncol Rep. 2012. Vol. 27, N 1. P. 28–38. doi: 10.3892/or.2011.1477
- Alikanoglu A., Gunduz S., Demirpence O., et al. Expression pattern and prognostic significance of claudin 1, 4 and 7 in pancreatic cancer // Asian Pac J Cancer Prev. 2015. Vol. 16, N 10. P. 4387–4392. doi: 10.7314/apjcp.2015.16.10.4387
- Dahiya N., Becker K., Wood W., et al. Claudin-7 is frequently overexpressed in ovarian cancer and promotes invasion // PLoS One. 2011. Vol. 6, N 7. P. e22119. doi: 10.1371/journal.pone.0022119
- Xu C., Ding Y., Wang K., et al. Claudin-7 deficiency promotes stemness properties in colorectal cancer through Sox9-mediated Wnt/β-catenin signalling // J Transl Med. 2021. Vol. 19. P. 1–15. doi: 10.1186/s12967-021-02983-3
- Lu Z., Ding L., Hong H., et al. Claudin-7 inhibits human lung cancer cell migration and invasion through ERK/MAPK signaling pathway // Exp Cell Res. 2011. Vol. 317, N 13. P. 1935–1946. doi: 10.1016/j.yexcr.2011.05.019
- Suligoj T., Vigsnæs L., Abbeele P., et al. Effects of Human Milk Oligosaccharides on the Adult Gut Microbiota and Barrier Function // Nutrients. 2020. Vol. 12, N 9. doi: 10.3390/nu12092808
- Zhang Y., Zheng A., Lu H., et al. The expression and prognostic significance of claudin-8 and androgen receptor in breast cancer // Onco Targets Ther. 2020. P. 3437–3448. doi: 10.2147/OTT.S242406
- Smith P., Choksi Y., Markham N., et al. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice // Am J Physiol Gastrointest Liver Physiol. 2021. Vol. 320, N 6. P. G936–G957. doi: 10.1152/ajpgi.00053.2021
- Okamoto E., Matsuda S., Yoshino Y., et al. Regulation of Paracellular Fluxes of Amino Acids by Claudin-8 in Normal Mouse Intestinal MCE301 Cells // Nutrients. 2023. Vol. 15, N 6. doi: 10.3390/nu15061346
- Ashikari D., Takayama K., Obinata D., et al. CLDN8, an androgen-regulated gene, promotes prostate cancer cell proliferation and migration // Cancer Sci. 2017. Vol. 108, N 7. P. 1386–1393. doi: 10.1111/cas.13269
- Sutinen P., Malinen M., Heikkinen S., Palvimo J. SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner // Nucleic Acids Res. 2014. Vol. 42, N 13. P. 8310–8319. doi: 10.1093/nar/gku543
- Meng J., Mostaghel E., Vakar-Lopez F., et al. Testosterone regulates tight junction proteins and influences prostatic autoimmune responses // Horm Cancer. 2011. Vol. 2, N 3. P. 145–156. doi: 10.1007/s12672-010-0063-1
- Cheng B., Rong A., Zhou Q., Li W. CLDN8 promotes colorectal cancer cell proliferation, migration, and invasion by activating MAPK/ERK signaling // Cancer Manag Res. 2019. Vol. 11. P. 3741–3751. doi: 10.2147/CMAR.S189558
- Gröne J., Weber B., Staub E., et al. Differential expression of genes encoding tight junction proteins in colorectal cancer: frequent dysregulation of claudin-1, -8 and -12. // Int J Colorectal Dis. 2007. Vol. 22, N 6. P. 651–659. doi: 10.1007/s00384-006-0197-3
- Cherradi S., Martineau P., Gongora C., Del Rio M. Claudin gene expression profiles and clinical value in colorectal tumors classified according to their molecular subtype // Cancer Manag Res. 2019. Vol. 11. P. 1337–1348. doi: 10.2147/CMAR.S188192
- Endo Y., Sugimoto K., Kobayashi M., et al. Claudin-9 is a novel prognostic biomarker for endometrial cancer // Int J Oncol. 2022. Vol. 61, N 5. P. 1–11. doi: 10.3892/ijo.2022.5425
- Zhuang X., Martin T., Ruge F., et al. Expression of Claudin-9 (CLDN9) in Breast Cancer, the Clinical Significance in Connection with Its Subcoat Anchorage Proteins ZO-1 and ZO-3 and Impact on Drug Resistance // Biomedicines. 2023. Vol. 11, N 12. doi: 10.3390/biomedicines11123136
- Davidson B., Doutel D., Holth A., Nymoen D. Claudin-10 is a new candidate prognostic marker in metastatic high-grade serous carcinoma // Virchows Arch. 2023. Vol. 482, N 6. P. 975–982. doi: 10.1007/s00428-023-03541-6
- Sun L., Feng L., Cui J. Increased expression of claudin-17 promotes a malignant phenotype in hepatocyte via Tyk2/Stat3 signaling and is associated with poor prognosis in patients with hepatocellular carcinoma // Diagn Pathol. 2018. Vol. 13. P. 1–10. doi: 10.1186/s13000-018-0749-1
- Yang P., Zhang M., Liu X., Pu H. MicroRNA-421 promotes the proliferation and metastasis of gastric cancer cells by targeting claudin-11 // Exp Ther Med. 2017. Vol. 14, N 3. P. 2625–2632. doi: 10.3892/etm.2017.4798
- Tian X., He Y., Han Z., et al. The Cytoplasmic Expression Of CLDN12 Predicts An Unfavorable Prognosis And Promotes Proliferation And Migration Of Osteosarcoma // Cancer Manag Res. 2019. Vol. 11. P. 9339–9351. doi: 10.2147/CMAR.S229441
- Zhang X., Wang X., Wang A., et al. CLDN10 promotes a malignant phenotype of osteosarcoma cells via JAK1/Stat1 signaling // J Cell Commun Signal. 2019. Vol. 13. P. 395–405. doi: 10.1007/s12079-019-00509-7
- Shu Y., Zhang W., Hou Q., et al. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer // Nat Commun. 2018. Vol. 9, N 1. P. 2447. doi: 10.1038/s41467-018-04907-0
- Ungureanu B., Lungulescu C., Pirici D., et al. Clinicopathologic relevance of Claudin 18.2 expression in gastric cancer: a meta-analysis // Front Oncol. 2021. Vol. 11. P. 643872. doi: 10.3389/fonc.2021.643872
- Li W., Jeng Y., Yang C. Claudin-18 as a marker for identifying the stomach and pancreatobiliary tract as the primary sites of metastatic adenocarcinoma // Am J Surg Pathol. 2020. Vol. 44, N 12. P. 1643–1648. doi: 10.1097/PAS.0000000000001583
- Luo J., Chimge N., Zhou B., et al. CLDN18. 1 attenuates malignancy and related signaling pathways of lung adenocarcinoma in vivo and in vitro // Int J Cancer. 2018. Vol. 143, N 12. P. 3169–3180. doi: 10.1002/ijc.31734
- Kiyokawa T., Hoang L., Pesci A., et al. Claudin-18 as a promising surrogate marker for endocervical gastric-type carcinoma // Am J Surg Pathol. 2022. Vol. 46, N 5. P. 628–636. doi: 10.1097/PAS.0000000000001847
- Primeaux M., Liu X., Gowrikumar S., et al. Claudin-1 interacts with EPHA2 to promote cancer stemness and chemoresistance in colorectal cancer // Cancer Lett. 2023. Vol. 579. P. 216479. doi: 10.1016/j.canlet.2023.216479
- Gowrikumar S., Primeaux M., Pravoverov K., et al. A claudin-based molecular signature identifies high-risk, chemoresistant colorectal cancer patients // Cells. 2021. Vol. 10, N 9. P. 2211. doi: 10.3390/cells10092211
- Zhao Z., Li J., Jiang Y., et al. CLDN1 increases drug resistance of non-small cell lung cancer by activating autophagy via up-regulation of ULK1 phosphorylation // Med Sci Monit Int Med J Exp Clin Res. 2017. Vol. 23. P. 2906. doi: 10.12659/msm.904177
- Akizuki R., Maruhashi R., Eguchi H., et al. Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells // Biochim Biophys Acta Mol Cell Res. 2018. Vol. 1865, N 5. P. 769–780. doi: 10.1016/j.bbamcr.2018.03.001
- Hoggard J., Fan J., Lu Z., et al. Claudin-7 increases chemosensitivity to cisplatin through the upregulation of caspase pathway in human NCI-H 522 lung cancer cells // Cancer Sci. 2013. Vol. 104, N 5. P. 611–618. doi: 10.1111/cas.12135
- Yang M., Li Y., Ruan Y., et al. CLDN6 enhances chemoresistance to ADM via AF-6/ERKs pathway in TNBC cell line MDAMB231 // Mol Cell Biochem. 2018. Vol. 443. P. 169–180. doi: 10.1007/s11010-017-3221-8
- Li J. Targeting claudins in cancer: diagnosis, prognosis and therapy // Am J Cancer Res. 2021. Vol. 11, N 7. P. 3406.
- Sahin U., Türeci Ö., Manikhas G., et al. FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18. 2-positive gastric and gastro-oesophageal adenocarcinoma // Ann Oncol. 2021. Vol. 32, N 5. P. 609–619. doi: 10.1016/j.annonc.2021.02.005
- Romero D. Zolbetuximab moves into the SPOTLIGHT // Nat Rev Clin Oncol. 2023. Vol. 20, N 6. P. 354. doi: 10.1038/s41571-023-00773-y
- Haanen J., Mackensen A., Koenecke C., et al. Abstract CT002: BNT211: a phase I trial to evaluate safety and efficacy of CLDN6 CAR-T cells and CARVac-mediated in vivo expansion in patients with CLDN6-positive advanced solid tumors // Cancer Res. 2022. Vol. 82, N 12_Supplement. P. CT002–CT002. doi: 10.1158/1538-7445.AM2022-CT002
- Torres J., Knight J., Mosley M., et al. Imaging of Claudin-4 in Pancreatic Ductal Adenocarcinoma Using a Radiolabelled Anti-Claudin-4 Monoclonal Antibody // Mol imaging Biol. 2018. Vol. 20, N 2. P. 292–299. doi: 10.1007/s11307-017-1112-8
- Kuwada M., Chihara Y., Luo Y., et al. Pro-chemotherapeutic effects of antibody against extracellular domain of claudin-4 in bladder cancer // Cancer Lett. 2015. Vol. 369, N 1. P. 212–221. doi: 10.1016/j.canlet.2015.08.019
- Rabinsky E., Joshi B., Pant A., et al. Overexpressed claudin-1 can be visualized endoscopically in colonic adenomas in vivo // Cell Mol Gastroenterol Hepatol. 2016. Vol. 2, N 2. P. 222–237. doi: 10.1016/j.jcmgh.2015.12.001
Дополнительные файлы
