Mixed Discontinuous Galerkin Time-Stepping Method for Semilinear Parabolic Optimal Control Problems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element approximation to semilinear parabolic optimal control problems, where the discontinuous finite element method of the order r (r ≥ 0) is used for the time discretization and the Raviart–Thomas mixed finite element method of the order λ (λ ≥ 0) is used for the space discretization. For λ ≥ 0, r = 0 or 1, we derive a priori error estimates for both the control variable and the state variables. Moveover, we derive a posteriori L2(0,T;L2(Ω)) error estimates for the scalar functions, assuming that only the underlying mesh is static.

作者简介

L. Li

Key Laboratory for Nonlinear Science and System Structure, School of Mathematics and Statistics, Chongqing Three Gorges University

编辑信件的主要联系方式.
Email: zyxlily81@126.com
中国, Wanzhou, Chongqing

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2015