Mixed Discontinuous Galerkin Time-Stepping Method for Semilinear Parabolic Optimal Control Problems
- 作者: Li L.1
-
隶属关系:
- Key Laboratory for Nonlinear Science and System Structure, School of Mathematics and Statistics, Chongqing Three Gorges University
- 期: 卷 27, 编号 1 (2016)
- 页面: 95-121
- 栏目: Article
- URL: https://journal-vniispk.ru/1046-283X/article/view/247487
- DOI: https://doi.org/10.1007/s10598-015-9306-x
- ID: 247487
如何引用文章
详细
In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element approximation to semilinear parabolic optimal control problems, where the discontinuous finite element method of the order r (r ≥ 0) is used for the time discretization and the Raviart–Thomas mixed finite element method of the order λ (λ ≥ 0) is used for the space discretization. For λ ≥ 0, r = 0 or 1, we derive a priori error estimates for both the control variable and the state variables. Moveover, we derive a posteriori L2(0,T;L2(Ω)) error estimates for the scalar functions, assuming that only the underlying mesh is static.
作者简介
L. Li
Key Laboratory for Nonlinear Science and System Structure, School of Mathematics and Statistics, Chongqing Three Gorges University
编辑信件的主要联系方式.
Email: zyxlily81@126.com
中国, Wanzhou, Chongqing
补充文件
