Convexity/Concavity and Stability Aspects of Rational Cubic Fractal Interpolation Surfaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Fractal interpolation is more general than the classical piecewise interpolation due to the presence of the scaling factors that describe smooth or non-smooth shape of a fractal curve/surface. We develop the rational cubic fractal interpolation surfaces (FISs) by using the blending functions and rational cubic fractal interpolation functions (FIFs) with two shape parameters in each sub-interval along the grid lines of the interpolation domain. The properties of blending functions and C1-smoothness of rational cubic FIFs render C1-smoothness to our rational cubic FISs. We study the stability aspects of the rational cubic FIS with respect to its independent variables, dependent variable, and first order partial derivatives at the grids. The scaling factors and shape parameters seeded in the rational cubic FIFs are constrained so that these rational cubic FIFs are convex/concave whenever the univariate data sets along the grid lines are convex/concave. For these constrained scaling factors and shape parameters, our rational cubic FIS is convex/concave to given convex/concave surface data.

作者简介

A. Chand

Indian Institute of Technology Madras

编辑信件的主要联系方式.
Email: chand@iitm.ac.in
印度, Chennai

N. Vijender

Vellore Institute of Technology University

Email: chand@iitm.ac.in
印度, Chennai

M. Navascués

Centro Politécnico Superior de Ingenieros, Universidad de Zaragoza

Email: chand@iitm.ac.in
西班牙, Zaragoza

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017