Determination of the Optimal Decomposition Layer of Wavelet De-Noising Based on Signal Band Feature


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, based on the frequency distribution law of discrete wavelet de-noising, the expression of the optimal decomposition layer of wavelet de-noising is deduced. By simulating the signals of four different frequency bands, the optimal decomposition number of single frequency signal de-noising calculated by the expression has the same result as the composite evaluation index method. The acoustic emission signal of concrete cracking is a multi-frequency broadband wave. The signal optimal decomposition layer of the crack initiation phase and crack propagation stage obtained by the composite index identification method both are 5, same to the result of the expression calculated. This paper analyzed the variation law of de-noising composite evaluation index of the main frequency band of complex multi-main frequency wideband wave signal with the increase in the number of layers and proved the rationality of the parameter selection in the expression. Contrasting with the composite evaluation index method, the expression is suitable for the calculation of the simple and complex signal optimal decomposition number. It is easier and more reasonable.

作者简介

Pan Ming

Nanjing Hydraulic Research Institute; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

Email: 1053238613@qq.com
中国, Nanjing, 210029; Nanjing, 210098

Jun Lu

Nanjing Hydraulic Research Institute; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

编辑信件的主要联系方式.
Email: 1053238613@qq.com
中国, Nanjing, 210029; Nanjing, 210098

Shaowei Hu

Nanjing Hydraulic Research Institute; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

Email: 1053238613@qq.com
中国, Nanjing, 210029; Nanjing, 210098

Xiangqian Fan

Nanjing Hydraulic Research Institute; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

Email: 1053238613@qq.com
中国, Nanjing, 210029; Nanjing, 210098

Xudong Chen

Hohai University

Email: 1053238613@qq.com
中国, Nanjing, 210098

Ji Lin

Hohai University

Email: 1053238613@qq.com
中国, Nanjing, 210098

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019