Gene network controlling the morphogenesis of D. melanogaster macrochaetes: An expanded model of the central regulatory circuit
- 作者: Bukharina T.A.1, Golubyatnikov V.P.2,3, Furman D.P.1,3
-
隶属关系:
- Institute of Cytology and Genetics, Siberian Branch
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- 期: 卷 47, 编号 5 (2016)
- 页面: 288-293
- 栏目: New Methods and Models in Developmental Biology
- URL: https://journal-vniispk.ru/1062-3604/article/view/183458
- DOI: https://doi.org/10.1134/S1062360416050040
- ID: 183458
如何引用文章
详细
The drosophila macrochaetes act as mechanoreceptors, the sensory organs of the peripheral nervous system. Each mechanoreceptor consists of four specialized cells, namely, the shaft, socket, neuron, and sheath. All these cells develop from a single cell referred to as the sensory organ precursor (SOP) cell. The SOP cell segregates from the surrounding cells of imaginal disc, thereby launching multistage sensory organ development. A characteristic feature of the SOP cell is the highest content of the proneural proteins Achaete and Scute (ASC) as compared with the surrounding cells. The pattern of changes in the content of proneural proteins in the SOP cell is determined by a gene network with the achaete-scute (AS-C) gene complex as its key component. The activity of this complex is controlled by the central regulatory circuit (CRC), containing the genes hairy, senseless (sens), charlatan (chn), scratch (scrt), daughterless (da), extramacrochaete (emc), and groucho (gro), encoding the transcription factors involved in the system of feedforwards and feedbacks and implementing the activation–repression of CRC components, as well as the gene phyllopod (phyl), an adaptor protein that controls the degradation of ASC proteins. A mathematical model describing the CRC functioning in the SOP cell as a regulator of the content of ASC proneural proteins is proposed.
作者简介
T. Bukharina
Institute of Cytology and Genetics, Siberian Branch
编辑信件的主要联系方式.
Email: bukharina@bionet.nsc.ru
俄罗斯联邦, pr. Akad. Lavrent’eva 10, Novosibirsk, 630090
V. Golubyatnikov
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: bukharina@bionet.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova, Novosibirsk, 630090
D. Furman
Institute of Cytology and Genetics, Siberian Branch; Novosibirsk State University
Email: bukharina@bionet.nsc.ru
俄罗斯联邦, pr. Akad. Lavrent’eva 10, Novosibirsk, 630090; ul. Pirogova, Novosibirsk, 630090
补充文件
