Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 47, No 1 (2016)

Developmental Biology of Vertebrates

Surface microdeformations and regulation of cell movements in Xenopus development

Evstifeeva A.Y., Belousov L.V.

Abstract

The velocities and directions of movements of individual outer ectodermal cells of Xenopus embryos in the course of normal development from the blastula to the early tail-bud stage, as well as after mechanical relaxation in the early gastrula, were measured. An alternation of the periods of directed movements of large cell masses and local cell wanderings was detected. In both cases, the trajectories of individual cells consisted primarily of orthogonal segments. Cell movements were measured on two scales. At a smallscale consideration (time intervals of the order of several hours and distances of the order of tens of microns), fairly slight linear stretching and compressive deformations were detected, which looked like gentle smooth gradients along which the upward morphogenetic movements of cells were directed. At a large-scale consideration (time intervals of the order of tens of minutes and distances of the order of microns), quasi-periodic fluctuations of velocities of individual cells partly correlated in time were found. The differences between these velocities generated microdeformations, which reached several tens of percent and developed within time intervals not more than 10 min. Measurements of relative magnitudes of mechanical forces influencing the cell walls suggests that microdeformations generate local stretching and compressive deformations modulating smoother tension gradients.

Russian Journal of Developmental Biology. 2016;47(1):1-10
pages 1-10 views

Mechanisms of Cell Proliferation and Differentiation

Reparative neurogenesis in the brain and changes in the optic nerve of adult trout Oncorhynchus mykiss after mechanical damage of the eye

Pushchina E.V., Varaksin A.A., Obukhov D.K.

Abstract

Reparative proliferation and neurogenesis in the brain integrative centers after mechanical eye injury in an adult trout Oncorhynchus mykiss have been studied. We have found that proliferation and neurogenesis in proliferative brain regions, the cerebellum, and the optic tectum were significantly enhanced after the eye injury. The cerebellum showed a significant increase in the proliferative activity of the cells of the dorsal proliferative zone and parenchymal cells of the molecular and granular layers. One week after the injury, PCNA-positive radial glia cells have been identified in the tectum. We have found for the first time that the eye trauma resulted in the development of local clusters of undifferentiated cells forming so called neurogenic niches in the tectum and cerebellum. The differentiation of neuronal cells detected by labeling cells with antibodies against the protein HuC/D occurred in the proliferative zones of the telencephalon, the optic tectum, cerebellum, and medulla of a trout within 2 days after the injury. We have shown that the HuC/D expression is higher in the proliferative brain regions than in the definitive neurons of a trout. In addition, we have examined cell proliferation, migration, and apoptosis caused by the eye injury in the contra- and ipsilateral optic nerves and adjacent muscle fibers 2 days after the trauma. The qualitative and quantitative assessment of proliferation and apoptosis in the cells of the optic nerve of a trout has been made using antibodies against PCNA and the TUNEL method.

Russian Journal of Developmental Biology. 2016;47(1):11-32
pages 11-32 views

Embryogenesis and Carcinogenesis

Role of GAGA factor in drosophila primordial germ cell migration and gonad development

Dorogova N.V., Khrushcheva A.S., Fedorova E.V., Ogienko A.A., Baricheva E.M.

Abstract

The GAGA protein of drosophila is a factor involved in epigenetic transcription regulation of a large gene group controlling developmental processes. In this paper, the role of GAGA factor in germ cell migration is demonstrated as well as its effect on the gonad development in drosophila embryogenesis. Mutations in the Trl gene, encoding GAGA factor, prematurely induces the active migration program and relocation of the primordial cells inward the embryo before the beginning of gastrulation. The germ cells that prematurely separated from the main group migrate ectopically, lose orientation, and stay out of gonad development. Expression pattern of the Trl gene suggests its activity in epithelial cells of the embryonic blastoderm, part of which contact primordial cells. Thus, GAGA factor influences migration of these cells in an indirect manner via their somatic environment.

Russian Journal of Developmental Biology. 2016;47(1):33-40
pages 33-40 views

Experimental Embryology

Acceleration of embryonic development of Pinus sibirica trees with a one-year reproductive cycle

Tret’yakova I.N., Lukina N.V.

Abstract

The study of the formation of embryonic structures in Pinus sibirica forms with a one-year reproductive cycle showed that the acceleration of the embryonic process manifested itself as a reduction of the coenocytic stage of the female gametophyte development (1.5 months instead of 1 year). The egg was not fertilized because of the asynchronous maturation of male and female gametophytes. Seeds without embryos were formed. We assumed that the acceleration of the reproductive process in Pinus sibirica was caused by a mutation in the female generative organs.

Russian Journal of Developmental Biology. 2016;47(1):41-48
pages 41-48 views

Morphogenesis

Variability of quantitative morphogenetic parameters during early morphogenesis of the loach, Misgurnus fossilis L.

Cherdantsev V.G., Korvin-Pavlovskaya E.G.

Abstract

Analysis of normal variation in quantitative morphological characters during the early embryonic development of the loach, based on observations on individual developmental trajectories of living embryos, shows that the dorsoventral differentiation of the blastoderm proceeds in two stages. Initially, at the onset of epiboly, the sagittal (short) and transverse (long) blastoderm meridians are marked off, and only then, upon germ ring (GR) formation, differentiation between the opposite poles of the sagittal meridian takes place. The embryonic shield (ES) usually appears in the segment of the blastoderm where the radius of its external curvature reaches a maximum and, therefore, the active surface tension at the blastoderm boundary with the YSL periblast) and yolk is the highest. In this case, the convergence of inner cells toward the future dorsal segment (leading to ES formation) is a mechanical consequence of surface tension anisotropy. The normal course of epiboly is associated with periodic changes in the curvature of the blastoderm external surface, with new structures (the dorsal segment, GR, and ES) are marked off only when the surface curvature becomes maximally uniform. Although the ES in most embryos appears within the initial dorsal segment, individual developmental trajectories have been traced where the GR starts to form at the dorsal pole of the blastoderm but the ES develops on its opposite site, at the point of GR closure. In both cases, GR formation is initiated at the point of convergence of centrifugal cell migration flows that arise in the marginal zone of the blastoderm upon GR initiation or closure.

Russian Journal of Developmental Biology. 2016;47(1):49-62
pages 49-62 views