Complex vector measure and integral over manifolds with locally finite variations


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is well known that any compactly supported continuous complex differential n-form can be integrated over real n-dimensional C1 manifolds in Cm (m ≥ n). For n = 1, the integral along any locally rectifiable curve is defined. Another generalization is the theory of currents (linear functionals on the space of compactly supported C differential forms). The topic of the article is the integration of measurable complex differential (n, 0)-forms (containing no \(d{\bar z_j}\)) over real n-dimensional C0 manifolds in Cm with locally finite n-dimensional variations (a generalization of locally rectifiable curves to dimensions n > 1). The last result is that a real n-dimensional manifold C1 embedded in Cm has locally finite variations, and the integral of a measurable complex differential (n, 0)-form defined in the article can be calculated by a well-known formula.

About the authors

A. V. Potepun

St. Petersburg State University

Author for correspondence.
Email: apotepun@pochta.tvoe.tv
Russian Federation, Universitetskaya nab. 7/9, St. Petersburg, 199034

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Allerton Press, Inc.