Honda Formal Module in an Unramified p-Extension of a Local Field as a Galois Module
- Authors: Hakobyan T.L.1, Vostokov S.V.1
-
Affiliations:
- St. Petersburg State University
- Issue: Vol 51, No 4 (2018)
- Pages: 317-321
- Section: Mathematics
- URL: https://journal-vniispk.ru/1063-4541/article/view/186127
- DOI: https://doi.org/10.3103/S1063454118040027
- ID: 186127
Cite item
Abstract
For a fixed rational prime number p, consider a chain of finite extensions of fields K0/ℚp, K/K0, L/K, and M/L, where K/K0 is an unramified extension and M/L is Galois extension with Galois group G. Suppose that a one-dimensional Honda formal group F over the ring \(\mathcal{O}_K\) relative to the extension K/K0 and a uniformizing element π ∈ K0 is given. This paper studies the structure of \(F(\mathfrak{m}_M)\) as an \(\mathcal{O}_{K_0}\)[G]-module for an unramified p-extension M/L provided that \(W_F\cap{F({\frak{m}}_L)}=W_F\cap{F({\frak{m}}_M)}=W_F^s\) for some s ≥ 1, where WFs is the πs-torsion and WF = ∪n=1∞WFn is the complete π-torsion of a fixed algebraic closure Kalg of the field K.
Keywords
About the authors
T. L. Hakobyan
St. Petersburg State University
Author for correspondence.
Email: tigran19931026@gmail.com
Russian Federation, St. Petersburg, 199034
S. V. Vostokov
St. Petersburg State University
Email: tigran19931026@gmail.com
Russian Federation, St. Petersburg, 199034
Supplementary files
