Uniaxial Attitude Stabilization of a Rigid Body under Conditions of Nonstationary Perturbations with Zero Mean Values
- Authors: Aleksandrov A.Y.1, Tikhonov A.A.1
-
Affiliations:
- St. Petersburg State University
- Issue: Vol 52, No 2 (2019)
- Pages: 187-193
- Section: Mechanics
- URL: https://journal-vniispk.ru/1063-4541/article/view/186320
- DOI: https://doi.org/10.1134/S106345411902002X
- ID: 186320
Cite item
Abstract
This paper deals with the problem of uniaxial stabilization of the angular position of a rigid body exposed to a nonstationary perturbing torque. The perturbing torque is represented as a linear combination of homogeneous functions with variable coefficients. It is assumed that the order of homogeneity of perturbations does not exceed the order of homogeneity of the restoring torque, and the variable coefficients in the components of the disturbing torque have zero mean values. A theorem on sufficient conditions for the asymptotic stability of a programmed motion of the body is proven using the Lyapunov direct method. The determined conditions guaranteeing the solution to the problem of body uniaxial stabilization do not impose any restrictions on the amplitudes of oscillations of the disturbance torque coefficients. Results of numerical modeling are presented that confirm the conclusions obtained analytically.
About the authors
A. Yu. Aleksandrov
St. Petersburg State University
Author for correspondence.
Email: a.u.aleksandrov@spbu.ru
Russian Federation, St. Petersburg, 199034
A. A. Tikhonov
St. Petersburg State University
Author for correspondence.
Email: a.tikhonov@spbu.ru
Russian Federation, St. Petersburg, 199034
Supplementary files
