Constructing ultrasonic images of soft spherical scatterers


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers specific features of ultrasonic visualization of gas bubbles in a liquid or a medium of like soft biological tissue type under conditions when the size of scatterers is comparable to the acoustic wavelength. It was proposed to use styrofoam specimens as the experimental model of stationary gas bubbles. Patterns of ultrasound scattering by a styrofoam sphere in water were obtained experimentally. It was shown that the measurement results agree well with the prediction of the classical theoretical model of scattering of a plane wave by a perfectly soft sphere. Several experiments were performed illustrating the specific features of visualizing millimeter-sized bubbles. A Terason commercial ultrasonic scanner was used; gelatin specimens with embedded styrofoam spheres served as the objects of study. The simulation and experimental results showed that when bubbles with diameters of <1 mm are visualized, it is impossible to measure the diameter of scatterers because bubbles of different diameters are imaged as bright spots of identical diameter, which is equal to the scanner resolution. To eliminate this difficulty, it is recommended to use the results of theoretical simulation performed in this study, which revealed a monotonic increase in the backscattered signal intensity with an increase in bubble radius. An ultrasonic visualization mode is proposed in which the brightness of scattered signals is used to differentiate between bubbles of different size.

About the authors

E. A. Annenkova

Moscow State University

Author for correspondence.
Email: a-a-annenkova@yandex.ru
Russian Federation, Moscow, 119991

S. A. Tsysar’

Moscow State University

Email: a-a-annenkova@yandex.ru
Russian Federation, Moscow, 119991

O. A. Sapozhnikov

Moscow State University; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory

Email: a-a-annenkova@yandex.ru
Russian Federation, Moscow, 119991; Seattle, WA, 98105

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.