Single X-ray Bursts and the Model of a Spreading Layer of Accreting Matter over the Neutron Star Surface


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The excess of the rate of type I X-ray bursts over that expected when the matter fallen between bursts completely burns out in a thermonuclear explosion which is observed in bursters with a high persistent luminosity (4 × 1036LX ≲ 2 × 1037 erg s−1) is explained in terms of the model of a spreading layer of matter coming from the accretion disk over the neutron star surface. In this model the accreting matter settles to the stellar surface mainly in two high-latitude ring zones. Despite the subsequent spreading of matter over the entire star, its surface density in these zones turns out to be higher than the average one by 2–3 orders of magnitude, which determines the predominant ignition probability. The multiple events whereby the flame after the thermonuclear explosion in one ring zone (initial burst) propagates through less densematter to another zone and initiates a second explosion in it (recurrent burst) make a certain contribution to the observed excess of the burst rate. However, the localized explosions of matter in these zones, after which the burning in the zone rapidly dies out without affecting other zones, make a noticeably larger contribution to the excess of the burst rate over the expected one.

About the authors

S. A. Grebenev

Space Research Institute

Author for correspondence.
Email: grebenev@iki.rssi.ru
Russian Federation, Profsoyuznaya ul. 84/32, Moscow, 117997

I. V. Chelovekov

Space Research Institute

Email: grebenev@iki.rssi.ru
Russian Federation, Profsoyuznaya ul. 84/32, Moscow, 117997

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Inc.