


Vol 42, No 5 (2016)
- Year: 2016
- Articles: 6
- URL: https://journal-vniispk.ru/1063-7737/issue/view/11886
Article
Catalog of candidates for quasars at 3 < z < 5.5 selected among X-Ray sources from the 3XMM-DR4 survey of the XMM-Newton observatory
Abstract
We have compiled a catalog of 903 candidates for type 1 quasars at redshifts 3 < z < 5.5 selected among the X-ray sources of the “serendipitous” XMM-Newton survey presented in the 3XMMDR4 catalog (the median X-ray flux is ≈5 × 10−15 erg s−1 cm−2 in the 0.5–2 keV energy band) and located at high Galactic latitudes |b| > 20° in Sloan Digital Sky Survey (SDSS) fields with a total area of about 300 deg2. Photometric SDSS data as well infrared 2MASS and WISE data were used to select the objects. We selected the point sources from the photometric SDSS catalog with a magnitude error δmz′ < 0.2 and a color i′ − z′ < 0.6 (to first eliminate the M-type stars). For the selected sources, we have calculated the dependences χ2(z) for various spectral templates from the library that we compiled for these purposes using the EAZY software. Based on these data, we have rejected the objects whose spectral energy distributions are better described by the templates of stars at z = 0 and obtained a sample of quasars with photometric redshift estimates 2.75 < zphot < 5.5. The selection completeness of known quasars at zspec > 3 in the investigated fields is shown to be about 80%. The normalized median absolute deviation (Δz = |zspec − zphot|) is σΔz/(1+zspec) = 0.07, while the outlier fraction is η = 9% when Δz/(1 + zспек.) > 0.2. The number of objects per unit area in our sample exceeds the number of quasars in the spectroscopic SDSS sample at the same redshifts approximately by a factor of 1.5. The subsequent spectroscopic testing of the redshifts of our selected candidates for quasars at 3 < z < 5.5 will allow the purity of this sample to be estimated more accurately.



Observational capabilities of the new medium- and low-resolution spectrograph at the 1.6-m telescope of the Sayan Observatory
Abstract
The capabilities of the new medium- and low-resolution spectrograph installed recently on the 1.6-m AZT-33IK telescope at the Sayan Observatory of the Institute of Solar–Terrestrial Physics to solve the problems of ground-based optical support for the future all-skyX-ray survey of the SRGobservatory are discussed. Results of the test observations of galaxy clusters, active galactic nuclei (AGNs) and quasars, and cataclysmic variables performed immediately after the installation of the spectrograph on the telescope are presented. The results of these observations show that the AZT-33IK telescope equipped with the new medium- and low-resolution spectrograph can provide a substantial fraction of the necessary optical observations in the program of ground-based optical support for the all-sky survey of the SRG observatory.



Fractal properties of stellar systems and random forces
Abstract
The nearest neighbor distance distribution law is generalized to fractal stellar media. The asymptotics of the distribution law for the magnitude of a large random force has been derived for them. An expression for the effective mean interparticle distance in such a medium has been found. The derived asymptotics for a power-law change in conditional density is shown to coincide closely with the results obtained within the framework of a general approach. We conclude that the large random forces in a fractal stellar medium are entirely attributable to the nearest neighbors (clumps) located in a sphere with an effective radius determined from a generalized Holtsmark distribution.



T Tauri stars: Physical parameters and evolutionary status
Abstract
Long-term homogeneous photometry for 35 classical T Tauri stars (CTTS) in the Taurus–Auriga star-forming region has been analyzed. Reliable effective temperatures, interstellar extinctions, luminosities, radii, masses, and ages have been determined for the CTTS. The physical parameters and evolutionary status of 35 CTTS from this work and 34 weak-line T Tauri stars (WTTS) from previous studies have been compared. The luminosities, radii, and rotation periods of low-mass (0.3–1.1 M⊙) CTTS are shown to be, on average, greater than those of low-mass WTTS, in good agreement with the evolutionary status of these two subgroups. The mean age of the younger subgroup of WTTS from our sample (2.3 Myr) essentially coincides with the mean duration of the protoplanetary disk accretion phase (2.3 Myr) for a representative sample of low-mass stars in seven young stellar clusters. The accretion disk dissipation time scale for the younger subgroup of CTTS (<4 Myr) in the Taurus–Auriga star-forming region is shown to be no greater than 0.4 Myr, in good agreement with the short protoplanetary disk dissipation time scale that is predicted by present-day protoplanetary disk evolution models.



XZ And a semidetached asynchronous binary system
Abstract
In this work the light curves (LCs) solutions along with the radial velocity curve of the semidetached binary systemXZ And are presented using the PHOEBE program(ver 0.31a). Absolute parameters of the stellar components were then determined, enabling us to discuss structure and evolutionary status of the system. The analysis indicates that the primary is a non-synchronous (i.e., F1 = 3.50 ± 0.01) Main Sequence (MS) star and the secondary is a bit more evolved, and fills its Roche critical surface. In addition, times of minima data (“O − C curve”) were analyzed. Apart from an almost parabolic variation in the general trend of O − C data, which was attributed to a mass transfer from the secondary with the rate ̇2 = (9.52 ± 0.41) × 10−10M⊙ yr−1; two cyclic variations with mean periods of 34.8 ± 2.4 and 23.3 ± 3.0 yr, modulating the orbital period, were found, which were attributed to a third body orbiting around the system, and magnetic activity cycle effect, respectively.



Rotational shear near the solar surface as a probe for subphotospheric magnetic fields
Abstract
Helioseismology revealed an increase in the rotation rate with depth just beneath the solar surface. The relative magnitude of the radial shear is almost constant with latitude. This rotational state can be interpreted as a consequence of two conditions characteristic of the near-surface convection: the smallness of convective turnover time in comparison with the rotation period and absence of a horizontal preferred direction of convection anisotropy. The latter condition is violated in the presence of a magnetic field. This raises the question of whether the subphotospheric fields can be probed with measurements of near-surface rotational shear. The shear is shown to be weakly sensitive to magnetic fields but can serve as a probe for sufficiently strong fields of the order of one kilogauss. It is suggested that the radial differential rotation in extended convective envelopes of red giants is of the same origin as the near-surface rotational shear of the Sun.


