Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 43, No 5 (2017)

Article

Diffusion of elements in the interstellar medium in early-type galaxies

Medvedev P.S., Sazonov S.Y., Gilfanov M.R.

Abstract

The role of diffusion in the redistribution of elements in the hot interstellar medium of earlytype galaxies is considered. It is well known that gravitational sedimentation can affect significantly the abundances of helium and heavy elements in the hot intergalactic gas of massive galaxy clusters. The universal temperature profile in cool-core clusters and the theoretical mass–temperature relation suggest that the maximum effect of sedimentation must take place in the most massive virialized objects in the Universe. However, observational data from the Chandra and XMM-Newton observatories demonstrate more complex scaling relations between the masses of early-type galaxies and other parameters, such as the mass fraction and temperature of the interstellar gas. An important fact is that the radial temperature profile can have both falling and rising patterns. We have calculated the diffusion based on the observed gas density and temperature distributions for 13 early-type galaxies that have different envelope types and cover a wide range of X-ray luminosities. To estimate the maximum effect of sedimentation and thermal diffusion, we have solved the full set of Burgers equations for a non-magnetized interstellar plasma. The results obtained demonstrate a considerable increase of the He/H ratio within one effective radius for all galaxies of our sample. For galaxies with a falling or constant temperature profile the average increase of the helium abundance is 60% in one billion years of diffusion. The revealed effect can introduce a significant bias into the metal abundance estimate based on X-ray spectroscopy and can affect the evolution of stars that could be formed from a gas with a high helium abundance.

Astronomy Letters. 2017;43(5):285-303
pages 285-303 views

Vertical distribution and kinematics of planetary nebulae in the milky way

Bobylev V.V., Bajkova A.T.

Abstract

Based on published data, we have produced a sample of planetary nebulae (PNe) that is complete within 2 kpc of the Sun. We have estimated the total number of PNe in the Galaxy from this sample to be 17 000±3000 and determined the vertical scale height of the thin disk based on an exponential density distribution to be 197 ± 10 pc. The next sample includes PNe from the Stanghellini–Haywood catalog with minor additions. For this purpose, we have used ~200 PNe with Peimbert’s types I, II, and III. In this case, we have obtained a considerably higher value of the vertical scale height that increases noticeably with sample radius. We have experimentally found that it is necessary to reduce the distance scale of this catalog approximately by 20%. Then, for example, for PNe with heliocentric distances less than 4 kpc the vertical scale height is 256 ± 12 kpc. A kinematic analysis has confirmed the necessity of such a reduction of the distance scale.

Astronomy Letters. 2017;43(5):304-315
pages 304-315 views

New orbits of wide visual double stars

Kiyaeva O.V., Romanenko L.G., Zhuchkov R.Y.

Abstract

Based on photographic and CCD observations with the Pulkovo 26-inch refractor, radial velocity measurements with the 1.5-m RTT-150 telescope (TUBITAK National Observatory, Turkey), and highly accurate observations published in the WDS catalog, we have obtained the orbits of ten wide visual double stars by the apparent motion parameter method. The orientation of the orbits in the Galactic coordinate system has been determined. For the outer pair of the multiple star HIP 12780 we have calculated a family of orbits with a minimum period P = 4634 yr. Two equivalent solutions with the same period have been obtained for the stars HIP 50 (P = 949 yr) and HIP 66195 (P = 3237 yr). We have unambiguously determined the orbits of six stars: HIP 12777 (P = 3327 yr), HIP 15058 (P = 420 yr), HIP 33287 (P = 1090 yr), HIP 48429 (P = 1066 yr), HIP 69751 (P = 957 yr), and HIP 73846 (P = 1348 yr). The orbit of HIP 55068 is orientated perpendicularly to the plane of the sky, P >1000 yr. The star HIP 48429 is suspected to have an invisible companion.

Astronomy Letters. 2017;43(5):316-331
pages 316-331 views

A joined model for solar dynamo and differential rotation

Kitchatinov L.L., Nepomnyashchikh A.A.

Abstract

A model for the solar dynamo, consistent in global flow and numerical method employed with the differential rotation model, is developed. The magnetic turbulent diffusivity is expressed in terms of the entropy gradient, which is controlled by the model equations. The magnetic Prandtl number and latitudinal profile of the alpha-effect are specified by fitting the computed period of the activity cycle and the equatorial symmetry of magnetic fields to observations. Then, the instants of polar field reversals and time-latitude diagrams of the fields also come into agreement with observations. The poloidal field has a maximum amplitude of about 10 Gs in the polar regions. The toroidal field of several thousand Gauss concentrates near the base of the convection zone and is transported towards the equator by the meridional flow. The model predicts a value of about 1037 erg for the total magnetic energy of large-scale fields in the solar convection zone.

Astronomy Letters. 2017;43(5):332-343
pages 332-343 views

The speckle polarimeter of the 2.5-m telescope: Design and calibration

Safonov B.S., Lysenko P.A., Dodin A.V.

Abstract

The speckle polarimeter is a facility instrument of the 2.5-mSAIMSU telescope that combines the features of a speckle interferometer and a polarimeter. The speckle polarimeter is designed for observations in several visible bands in the following modes: speckle interferometry, polarimetry, speckle polarimetry, and polaroastrometry. In this paper we describe the instrument design and the procedures for determining the angular scale of the camera and the position angle of the camera and the polarimeter. Our measurements of the parameters for the binary star HD 9165 are used as an example to demonstrate the technique of speckle interferometry. For bright objects the accuracy of astrometry is limited by the error of the correction for the distortion caused by the atmospheric dispersion compensator. At zenith distances less than 45◦ the additional relative measurement error of the separation is 0.7%, while the additional error of the position angle is 0.3°. In the absence of a dispersion compensator the accuracy of astrometry is limited by the uncertainty in the scale and position angle of the camera, which are 0.15% and 0.06°, respectively. We have performed polarimetric measurements of unpolarized stars and polarization standards. The instrumental polarization at the Cassegrain focus in the V band does not exceed 0.01%. The instrumental polarization for the Nasmyth focus varies between 2 and 4% within the visible range; we have constructed its model and give a method for its elimination from the measurements. For stars with an intrinsic polarization of less than 0.2% during observations at the Cassegrain focus the error is determined mainly by the photon and readout noises and can reach 5 × 10−5.

Astronomy Letters. 2017;43(5):344-364
pages 344-364 views