


Vol 43, No 6 (2017)
- Year: 2017
- Articles: 5
- URL: https://journal-vniispk.ru/1063-7737/issue/view/11920
Article
Polarization and brightness of the blazar S5 0716+714 in 1991–2004
Abstract
We investigate the photometric and polarimetric behavior of the blazar S5 0716+714 based on the observations carried out in 1991–2004 at the 125-cm Crimean Astrophysical Observatory telescope (AZT11) with a photopolarimeter that allows simultaneous polarization and brightness measurements to be made in the U BV RI bands. We also provide the U BV photometry for the blazar obtained in 2000–2009 with a 60-cm telescope at the Crimean Station of the Sternberg Astronomical Institute. The pattern of flux variability and the correlation between the brightness, color, and polarization variations have been investigated. In this time interval the blazar showed a significant brightness and polarization variability similar to noise processes.



Identification of X-ray lines in the spectrum of the arcsec-scale precessing jets of SS 433
Abstract
The extended X-ray emission observed at arcsec scales along the propagation trajectory of the precessing relativistic jets of the Galactic microquasar SS 433 features a broad emission line, with the position of the centroid being significantly different for the approaching and receding jets (≈7.3 and ≈6.4 keV, respectively). These observed line positions are at odds with the predictions of the kinematic model for any of the plausible bright spectral lines in this band, raising the question of their identification. Here we address this issue by taking into account time delays of the emission coming from the receding regions of the jets relative to that from the approaching ones, which cause a substantial phase shift and distortion of the predicted line positions for the extended (~1017 cm) emission compared to the X-ray and optical lines observed from the central source (emitted at distances ~1011 and ~1015 cm, respectively). We demonstrate that the observed line positions are fully consistent with the Fe XXVI Lyα (E0 = 6.96 keV) line emerging from a region of size ~6 × 1016 cm along the jet. This supports the idea that intensive reheating of the jets up to temperatures >10 keV takes place at these distances, probably as a result of partial deceleration of the jets due to interaction with the surrounding medium, which might cause collisions between discrete dense blobs inside the jets.



Kinematics of the structure of the active region in Orion-KL
Abstract
The kinematics of the superfine structure of the active star-forming region in the dense molecular cloud Orion-KL has been investigated in the Н2О maser emission for the period 1998–2003. It has been established that the surrounding gas inflows onto the disk and is transferred in a spiral trajectory to the center. An excess angular momentum as it is accumulated is carried away by a bipolar outflow; a highvelocity central flow surrounded by low-velocity components is formed. The outer low-velocity component observed at the detection limit has a diameter Ø3 ≈ 4.5 AU, further out, Ø2 ≈ 0.5 AU and Ø1 ≈ 0.24 AU. The gas transfer velocity increases exponentially as the center is approached. The maser emission from the central flow is decisive. A rise in the velocity leads to a flow discontinuity and a reduction in the amount of inflowingmaterial and, accordingly, the emission level. The emission in the period under consideration was reduced exponentially for ~6 months, whereupon its restoration began.



AI canis minoris, a pulsating low-mass supergiant at an early transition phase from the AGB to the post-AGB stage of evolution
Abstract
The U BV photometry and low-resolution spectroscopy for the semiregular variable AI CMi, a candidate for post-AGB objects, performed in 1996–2016 and 2000–2013, respectively, are presented. The star showed multiperiodic brightness variations with an amplitude up to \(1\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{m} 5\) in the V band, a significant (up to \(0\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{m} 4\)) bluing of the B − V and U − B colors as the star faded, and a change of its spectrum from G5 I to K3–5 I, depending on its brightness. A possible long-term fading of AI CMi below \(8\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{m} 5\) in the period from May 2013 to early 2015 is observed in the light curve. The colors in this episode did not change the pattern of their unusual behavior with brightness. The main feature of the spectrum for AI CMi is the appearance and strengthening of TiO absorption bands as its brightness declines, which are atypical in the spectra of ordinary G5–K3 supergiants. The bluing of the B − V and U − B colors is interpreted as the blanketing of stellar radiation predominantly in V (and to a lesser extent in B) by the TiO absorption bands whose intensity increases dramatically with decreasing brightness. Another cause of the bluing can be the scattering of stellar radiation by small dust particles in the gas–dust shell of AI CMi. The star’s continuum-normalized spectra over the period from 2000 to 2013 in the wavelength range 4200 to 7700 or 9200 Å are presented. These were taken at different phases of the pulsation cycle and clearly demonstrate the behavior of the TiO absorption bands depending on the V magnitude and B − V color. The equivalent widths of individual TiO bands weremeasured, and their correlation with the photometric parameters of the star is shown. AI CMi belongs to the O-rich branch of AGB/post-AGB supergiants and has a luminosity of ~4000 L⊙ at a distance of 1500 ± 700 pc. The mass of AI CMi is most likely small and close to the lower mass limit for post-AGB stars. The connection of the star’s pulsational activity and nonstationary wind with the formation of its molecular and dust shells is discussed briefly.



Zahn’s theory of dynamical tides and its application to stars
Abstract
Zahn’s theory of dynamical tides is analyzed critically. We compare the results of this theory with our numerical calculations for stars with a convective core and a radiative envelope and with masses of one and a half and two solar masses. We show that for a binary system consisting of stars of one and a half or two solar masses and a point object with a mass equal to the solar mass and with an orbital period of one day under the assumption of a dense spectrum and moderately rapid dissipation, the evolution time scales of the semimajor axis will be shorter than those in Zahn’s theory by several orders of magnitude.


