Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 43, No 8 (2017)

Article

An extension of the Planck galaxy cluster catalogue

Burenin R.A.

Abstract

We present a catalogue of galaxy clusters detected in the Planck all-sky Compton parameter maps and identified using data from the WISE and SDSS surveys. The catalogue comprises about 3000 clusters in the SDSS fields. We expect the completeness of this catalogue to be high for clusters with masses larger than M500 ≈ 3 × 1014M, located at redshifts z < 0.7. At redshifts above z ≈ 0.4, the catalogue contains approximately an order of magnitude more clusters than the 2nd Planck Catalogue of Sunyaev-Zeldovich sources in the same fields of the sky. This catalogue can be used for identification of massive galaxy clusters in future large cluster surveys, such as the SRG/eROSITA all-sky X-ray survey.

Astronomy Letters. 2017;43(8):507-515
pages 507-515 views

Cosmic gamma-ray bursts detected in the RELEC experiment onboard the Vernov satellite

Bogomolov A.V., Bogomolov V.V., Iyudin A.F., Kuznetsova E.A., Minaev P.Y., Panasyuk M.I., Pozanenko A.S., Prokhorov A.V., Svertilov S.I., Chernenko A.M.

Abstract

The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of ~500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of ~2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS–Wind experiments, and estimate the redshifts and Eiso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.

Astronomy Letters. 2017;43(8):516-528
pages 516-528 views

The possibility of investigating ultra-high-energy cosmic-ray sources using data on the extragalactic diffuse gamma-ray emission

Uryson A.V.

Abstract

We provide our estimates of the intensity of the gamma-ray emission with an energy near 0.1 TeV generated in intergalactic space in the interactions of cosmic rays with background emissions. We assume that the cosmic-ray sources are pointlike and that these are active galactic nuclei. The following possible types of sources are considered: remote and powerful ones, at redshifts up to z = 1.1, with a monoenergetic particle spectrum, E = 1021 eV; the same objects, but with a power-law particle spectrum; and nearby sources at redshifts 0 < z ≤ 0.0092, i.e., at distances no larger than 50 Mpc also with a power-law particle spectrum. The contribution of cosmic rays to the extragalactic diffuse gammaray background at an energy of 0.1 TeVhas been found to depend on the type of sources or, more specifically, the contribution ranges from f ≪ 10−4 to f ≈ 0.1, depending on the source model. We conclude that the data on the extragalactic background gamma-ray emission can be used to determine the characteristics of extragalactic cosmic-ray sources, i.e., their distances and the pattern of the particle energy spectrum.

Astronomy Letters. 2017;43(8):529-535
pages 529-535 views

The effect of multiplicity of stellar encounters and the diffusion coefficients in a locally homogeneous three-dimensional stellar medium: Removing the classical divergence

Rastorguev A.S., Utkin N.D., Chumak O.V.

Abstract

Agekyan’s λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.

Astronomy Letters. 2017;43(8):536-544
pages 536-544 views

Systematic error of the Gaia DR1 TGAS parallaxes from data for the red giant clump

Gontcharov G.A.

Abstract

Based on the Gaia DR1 TGAS parallaxes and photometry from the Tycho-2, Gaia, 2MASS, andWISE catalogues, we have produced a sample of ~100 000 clump red giants within ~800 pc of the Sun. The systematic variations of the mode of their absolute magnitude as a function of the distance, magnitude, and other parameters have been analyzed. We show that these variations reach 0.7 mag and cannot be explained by variations in the interstellar extinction or intrinsic properties of stars and by selection. The only explanation seems to be a systematic error of the Gaia DR1 TGAS parallax dependent on the square of the observed distance in kpc: 0.18R2 mas. Allowance for this error reduces significantly the systematic dependences of the absolute magnitude mode on all parameters. This error reaches 0.1 mas within 800 pc of the Sun and allows an upper limit for the accuracy of the TGAS parallaxes to be estimated as 0.2 mas. A careful allowance for such errors is needed to use clump red giants as “standard candles.” This eliminates all discrepancies between the theoretical and empirical estimates of the characteristics of these stars and allows us to obtain the first estimates of the modes of their absolute magnitudes from the Gaia parallaxes: mode(MH) = −1.49m ± 0.04m, mode(MKs) = −1.63m ± 0.03m, mode(MW1) = −1.67m ± 0.05m mode(MW2) = −1.67m ± 0.05m, mode(MW3) = −1.66m ± 0.02m, mode(MW4) = −1.73m ± 0.03m, as well as the corresponding estimates of their de-reddened colors.

Astronomy Letters. 2017;43(8):545-558
pages 545-558 views

Searching for stars closely encountering with the solar system based on data from the Gaia DR1 and RAVE5 catalogues

Bobylev V.V., Bajkova A.T.

Abstract

We have searched for the stars that either encountered in the past or will encounter in the future with the Solar system closer than 2 pc. For this purpose, we took more than 216 000 stars with the measured proper motions and trigonometric parallaxes from the Gaia DR1 catalogue and their radial velocities from the RAVE5 catalogue. We have found several stars for which encounters closer than 1 pc are possible. The star GJ 710, for which the minimum distance is dm = 0.063 ± 0.044 pc at time tm = 1385 ± 52 thousand years, is the record-holder among them. Two more stars, TYC 8088-631-1 and TYC 6528-980-1, whose encounter parameters, however, are estimated with large errors, are of interest.

Astronomy Letters. 2017;43(8):559-566
pages 559-566 views

On an efficient shock wave generation mechanism in the quiet solar transition region

Dunin-Barkovskaya O.V., Somov B.V.

Abstract

Two competing fundamental hypotheses are usually postulated in the solar coronal heating problem: heating by nanoflares and heating by waves. In the latter it is assumed that acoustic and magnetohydrodynamic disturbances whose amplitude grows as they propagate in a medium with a decreasing density come from the convection zone. The shock waves forming in the process heat up the corona. In this paper we draw attention to yet another very efficient shock wave generation process that can be realized under certain conditions typical for quiet regions on the Sun. In the approximation of stationary dissipative hydrodynamics we show that a shock wave can be generated in the quiet solar chromosphere–corona transition region by the fall of plasma from the corona into the chromosphere. This shock wave is directed upward, and its dissipation in the corona returns part of the kinetic energy of the falling plasma to the thermal energy of the corona. We discuss the prospects for developing a quantitative nonstationary model of the phenomenon.

Astronomy Letters. 2017;43(8):567-572
pages 567-572 views