


Vol 43, No 11 (2017)
- Year: 2017
- Articles: 5
- URL: https://journal-vniispk.ru/1063-7737/issue/view/11936
Article
A beam of particles in ultrahigh-energy cosmic rays?
Abstract
Three particles with energies of 36, 35, and 58 EeV arrived from one sky region were recorded by two EAS arrays during a day. The events are assumed to have been produced by the beam of particles that resulted from the interaction of cosmic rays with a relativistic shock front.



Radius of the neutron star magnetosphere during disk accretion
Abstract
The dependence of the spin frequency derivative \(\dot \nu \) of accreting neutron stars with a strongmagnetic field (X-ray pulsars) on the mass accretion rate (bolometric luminosity, Lbol) has been investigated for eight transient pulsars in binary systems with Be stars. Using data from the Fermi/GBM and Swift/BAT telescopes, we have shown that for seven of the eight systems the dependence \(\dot \nu \) (Lbol) can be fitted by the model of angular momentum transfer through an accretion disk, which predicts the relation \(\dot \nu \) ∼ L6/7bol. Hysteresis in the dependence \(\dot \nu \) (Lbol) has been confirmed in the system V 0332+53 and has been detected for the first time in the systems KS 1947+300, GRO J1008-57, and 1A 0535+26. Estimates for the radius of the neutron star magnetosphere in all of the investigated systems have been obtained. We show that this quantity varies from pulsar to pulsar and depends strongly on the analytical model and the estimates for the neutron star and binary system parameters.



Properties of the Tycho-2 catalogue from Gaia data release
Abstract
Based on the measurements performed in the first 14 months of Gaia operation, we have solved the problem of obtaining the systematic differences between the stellar positions and proper motions of the TGAS (Tycho–Gaia Astrometric Solution) and Tycho-2 catalogues. By dividing the common stars from the TGAS and Tycho-2 catalogues into three G-magnitude groups for mean values of \(10\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{m} 5,11\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{m} 5,and13\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{m} 0,\) we have obtained the systematic differences between the stellar equatorial coordinates and proper motions of both catalogues in the form of a decomposition into vector spherical harmonics by taking into account the magnitude equation. The systematic components have been extracted from the individual differences with a probability of 0.977–0.999. The constructed model of systematic differences allows any position measurements performed using Tycho-2 as a reference catalogue to be transformed to the TGAS frame. An important fact is the existence of a magnitude equation in the systematic differences: when passing from bright (G = 10m) to faint (G = 13m) stars, the systematic position differences change within the range from approximately −40 to 15 mas, while the systematic proper motion differences change from −3 to 3 mas yr−1. The orientation and mutual rotation parameters of the Tycho-2 and TGAS frames have also been found to be different for stars of different magnitudes: when passing from bright to faint stars, the rotation angle of the Tycho-2 frame relative to TGAS changes from 3.51 to 5.63 mas, while the angular velocity of rotation changes from 0.35 to 1.22 mas yr−1. Based on the developed method that allows the extent to which the systematic errors in the equatorial propermotions of stars affect the results of a kinematic analysis of the Galactic proper motions to be estimated within the Ogorodnikov–Milne model, we have shown that the slope of the Galactic rotation curve and the Oort parameter C are most sensitive to the transition from the Tycho-2 frame to the TGAS one. Their relative changes after the transformation to the TGAS frame reach 56 and 100%, respectively. At the same time, the changes in the estimates of the Oort parameters A and B as well as the linear velocity of the Sun relative to the Galactic center, the Galactic rotation period, the ratio of the epicyclic frequency to the angular velocity of Galactic rotation, and the mass of the Galaxy within the Galactocentric distance of the Sun are not so large, being 2−10%.



Spectroscopic studies of the unique yellow supergiant α Aqr in the Cepheid instability strip
Abstract
Based on 21 spectra with resolutions from 12 000 to 42 000 taken in 1997–2016 for the yellow supergiant α Aqr (which is believed to be nonvariable in the Cepheid instability strip), we have determined its effective temperature Teff and radial velocities from metal and hydrogen absorption lines. Blue and red components that account for 20–25% of the total number of lines used have been detected in the profiles of these lines. The effective temperature and radial velocities estimated from metal lines and their components do not show any noticeable variations, while the radial velocities determined from hydrogen lines show variations that are largest for the Hα line, with an amplitude of more than 10 km s−1. These variations resemble periodic (∼100 days) and sporadic ones. The presence of variable red components in the hydrogen line cores confirms that there is a circumstellar envelope around the supergiant. The radial velocities of these components exhibit a behavior similar to that of the hydrogen lines but with larger amplitudes (it is twice that for the R component of the Hα line). Such an unusual variability as well as the presence of blue components in metal lines and the star’s position at the red edge of the Cepheid instability strip can be explained by a possible residual pulsational activity in the upper atmospheric layers of the star, which “swings” the envelope with a larger amplitude when passing into a less dense medium. The multicomponent structure of the Na I D doublet lines and their variations over long time intervals may be indicative of a chromospheric activity and a change in the stellar wind intensity. These processes can affect the sporadic variations of the radial velocities in the upper atmospheric layers of the star and its envelope. We raise the question about a revision of the classification of α Aqr as a yellow nonvariable supergiant.



Structure and physical conditions in the Hα loops of an M7.7 solar flare
Abstract
The M7.7 solar flare on July 19, 2012, is the most dramatic example of a “Masuda” flare with a well-defined second X-ray above-the-loop-top source. The behavior of the system of loops accompanying this flare has been studied comprehensively by Liu et al. based on Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data. We have performed spectroscopic and filter observations of the Hα loops in this flare with the Large Solar Vacuum Telescope. The basic physical parameters in the loops of this peculiar flare generally coincide with the known data in Hα loops. However, the electron density, 1011 cm−3, and the integrated disk-center continuum intensity, 12%, are quite high, given that the observations were obtained almost 3 h after the flare onset.We have estimated the ascending velocity of the loop arcade (~3.5 km s−1) and the height difference between the Hα and 94 Å loops (~2 × 104 km).


