


Vol 44, No 6 (2018)
- Year: 2018
- Articles: 6
- URL: https://journal-vniispk.ru/1063-7737/issue/view/11956
Article
Study and Classification of SDSS Spectra for Byurakan–Iras Galaxies
Abstract
The sample of Byurakan–IRAS galaxies (BIG) has been created based on optical identifications of IRAS Point Source Catalog (PSC) at high galactic latitudes. As a result, 1178 galaxies have been identified. 172 of them have been observed spectroscopically with Byurakan Astrophysical Observatory (BAO, Armenia) 2.6 m, Special Astrophysical Observatory (SAO, Russia) 6m and Observatoire de Haute Provence (OHP, France) 1.93 m telescopes. Later on, spectra were obtained for more 83 BIG objects in Sloan Digital Sky Survey (SDSS). We have extracted and studied these spectra, classified them and measured spectral features. Diagnostic diagrams have been built to distinguish starbursts (SB), LINERs and Seyfert galaxies. Cross-correlations weremade for these objects with multiwavelength (MW) catalogues and their physical properties were studied. Among these 83 objects, 55 HII, 8 Seyfert galaxies, 2 LINERs, 4 other AGN, 6 composite spectrum objects, and 8 other emission-line galaxies have been revealed. Three of these objects are Ultra-Luminous InfraRed Galaxies (ULIRG).



Determination of Supermassive Black Hole Spins Based on the Standard Shakura–Sunyaev Accretion Disk Model and Polarimetric Observations
Abstract
Based on spectropolarimetry for 47 type 1 active galactic nuclei observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura–Sunyaev accretion disk model. About 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.



Extraordinary Supernova iPTF14hls: An Attempt at Interpretation
Abstract
We show that the Hα luminosity and the Thomson optical depth of supernova iPTF14hls on day 600 after its discovery make it possible to estimate the envelope age at this stage, which turns out to be ~1000 days. A model that suggests the explosion of a massive star with a radius of ~2 × 1013 cm 450 days before the discovery is proposed. In the optimal model the ejecta mass is 30 Mʘ with a kinetic energy of 8 × 1051 erg. The energy source at the main luminosity stage is presumably associated with the relativistic bipolar outflows produced by disk accretion onto a black hole. The [O I] 6300, 6364 Å doublet in the spectrum on day 600 is shown to be the result of emission from at least 1–3Mʘ of oxygen in the central ejecta zone. The oxygen distribution is aspherical and can be represented both by two blue- and redshifted components (in the optically thin case) and by one blueshifted component in the case of optically thick lines at an oxygen filling factor of ~2 × 10−3.



Low-Frequency Quasi-Periodic Oscillations in the X-ray Nova MAXI J1535-571 at the Initial Stage of Its 2017 Outburst
Abstract
We report the discovery of low-frequency quasi-periodic oscillations (QPOs) in the power spectrum of the X-ray nova MAXI J1535-571 at the initial stage of its outburst in September 2017. Based on data from the SWIFT and INTEGRAL instruments, we have traced the evolution of the QPO parameters (primarily their frequency) with time and their correlation with changes in the X-ray spectrum of the source (changes in the emission flux and hardness). We place constraints on the theoretical QPO generation models.



An Upper Limit on Nickel Overabundance in the Supercritical Accretion Disk Wind of SS 433 from X-ray Spectroscopy
Abstract
We analyze a long (with a total exposure time of 120 ks) X-ray observation of the unique Galactic microquasar SS 433 carried out by the XMM-Newton space observatory with the goal of searching for the fluorescent line of neutral (or weakly ionized) nickel at energy 7.5 keV. We consider two models for the formation of fluorescent lines in the spectrum of SS 433: (1) through the reflection of radiation from a putative central X-ray source off the optically thick neutral gas of the supercritical disk “funnel” walls; and (2) due to the scattering of the radiation coming from the hottest parts of the jets in the optically thin wind of the system. We show that for these two cases the flux of the Ni I Kα fluorescent line is expected to be 0.45 of the flux of the Fe I Kα fluorescent line at 6.4 keV for the relative nickel overabundance ZNi/Z = 10 observed in the jets of SS 433. For the continuum model without the absorption edge of neutral iron, we have found an upper limit on the flux of the narrow Ni I Kα fluorescent line of 0.9 × 10−5 phot s−1 cm−2 (90% confidence level). In the continuum model with the absorption edge we have determined an upper limit on the flux of the Ni I Kα line at the level of 2.5×10−5 phot s−1 cm−2. At the same time, the flux of the fluorescent iron line has been measured to be 9.98.411.2 × 10−5 phot s−1 cm−2. This result implies that the nickel overabundance in the accretion disk wind should be at least a factor of 1.5 times smal than the corresponding nickel overabundance observed in the jets of SS 433.



Influence of Inelastic Collisions with Hydrogen Atoms on Non-LTE Oxygen Abundance Determinations
Abstract
We present the results of our modeling of the O I line formation under non-LTE conditions in the atmospheres of FG stars. The statistical equilibrium of O I has been calculated using Barklem’s quantum-mechanical rates of inelastic collisions with hydrogen atoms. We have determined the non-LTE oxygen abundance from atomic O I lines for the Sun and 46 FG stars in a wide metallicity range, −2.6 < [Fe/H] < 0.2. The application of accurate atomic data has led to an increase in the departures from LTE and a decrease in the oxygen abundance compared to the use of Drawin’s theoretical approximation. The change in the non-LTE abundance from the infrared O I 7771-5 Å triplet lines is 0.11 dex for solar atmospheric parameters and diminishes in absolute value with decreasing metallicity. We have revised the [O/Fe]–[Fe/H] relationship derived by us previously. The change in [O/Fe] is small in the [Fe/H] range from −1.5 to 0.2. For stars with [Fe/H] < −1 the [O/Fe] ratio has increased so that [O/Fe] = 0.60 at [Fe/H] = −0.8 and rises to [O/Fe] = 0.75 at [Fe/H] = −2.6.


