


Vol 44, No 7 (2018)
- Year: 2018
- Articles: 5
- URL: https://journal-vniispk.ru/1063-7737/issue/view/11960
Article
Fine Structure of the Core of the Blazar OJ 287. II. Wavelength 2 cm
Abstract
We have continued our studies of the fine structure of the active region in the blazar OJ 287 at wavelength λ = 2cm with a resolution of 20 μas, the epochs of 1995–2017. We have identified fragments of two arms along which the surrounding plasma comes to the nozzle. The brightness temperature of the flows rises as the nozzle is approached to Tb ⩽ 1012 K. The high-velocity bipolar outflow surrounded by lowvelocity components carries away an excess angular momentum as it is accumulated. The high collimation and helicity of the flows are determined by rotation and precession, respectively. Ring currents responsible for the longitudinal magnetic fields are excited in the flows. The jet and counterjet are a mirror reflection of each other; the difference in sizes is determined by the acceleration/deceleration of the flows along/opposite to the magnetic field. The velocity of the high-velocity outflow is v ⩽ 0.06 c. The brightness temperature of the nozzle reaches Tb ⩽ 1014 K. The spectral index of the southern and northern nozzles is α ≈ 0.66 and ≈0.4, respectively; the difference is determined by absorption in the bulge. The separation between the nozzles is 12 μas or 0.05 pc. The central region of reduced brightness with a diameter ∅ ≈ 3.6 pc corresponds to the bulge inclined toward the jet at an angle of 65° to the plane of the sky. The counterjet is ejected toward the observer; the jet is ejected in the opposite direction and is visible outside the bulge from a distance of 1.5 pc. The structure and kinematics of the bulge correspond to a vortex nature. An enhanced supply of matter from the northern arm in the middle of 2000 increased the activity of the low-velocity nozzle. A secondary vortex located at a distance of 0.28 mas (1.3 pc) was formed. The high-velocity flow is ejected in a direction of −110°.



A Model for the Source of Quasi-Harmonic Bursts on the Crab Pulsar
Abstract
A model for the source of microwave bursts from the Crab pulsar in the form of a current sheet with a transversemagnetic field has been investigated. The emission generation mechanism is based on the excitation of plasma waves at the double plasma resonance frequencies in a nonrelativistic nonequilibrium plasma followed by their scattering into electromagnetic waves that escape from the current sheet into the neutron star magnetosphere. The basic parameters of the source explaining the observed characteristics of quasi-harmonic bursts in the interpulses of radio emission from this pulsar have been established.



Multicolor Photometry and Spectroscopy of the Yellow Supergiant with Dust Envelope HD 179821 = V1427 Aquilae
Abstract
We present the results of multicolor (UBV JHKLM) photometry (2009–2017) and low-resolution spectroscopy (2016–2017) of the semi-regular variable V1427 Aql = HD 179821, a yellow supergiant with gas-dust envelope. The star displays low-amplitude (ΔV<0.m2) semi-periodic brightness variations superimposed on a long-term trend. The light curve shape and timescale change from cycle to cycle. There are temperature variations characteristic for pulsations; brightness oscillations with no significant change of color are also observed. The UBV data for the 2009–2011 interval are well reproduced by a superposition of two periodic components with P = 170d and 141d (or P = 217d—the one year alias of P = 141d). The variation became less regular after 2011, the timescale increased and exceeded 250d. Unusual photometric behavior was seen in 2015 when the star brightness increased by 0.m25 in the V filter in 130 days and reached the maximum value ever observed in the course of our monitoring since 1990. In 2009–2016 the annual average brightness monotonically increased in V, J, K, whereas it decreased in U and B. The annual average U − B, B − V, and J − K colors grew, the star was getting redder. The cooling and expanding of the star photosphere along with the increasing of luminosity may explain the long-term trend in brightness and colors. Based on our photometric data we suppose that the photosphere temperature decreased by ~400 K in the 2008–2016 interval, the radius increased by ~24%, and the luminosity grew by ~19%. We review the change of annual average photometric data for almost 30 years of observations. Low-resolution spectra in the λ4000−9000 Å wavelength range obtained in 2016–2017 indicate significant changes in the spectrum of V1427 Aql as compared with the 1994–2008 interval, i.e., the Ba II and near-infraredCa II triplet absorptions have gotten stronger while the OI λ7771-4 triplet blend has weakened that points out the decrease of temperature in the region where the absorptions are formed. The evolutionary stage of the star is discussed. We also compare V1427 Aql with post-AGB stars and yellow hypergiants.



Estimating the Parameters of Collisions between Fractal Dust Clusters in a Gas–Dust Protoplanetary Disk
Abstract
Studying the origin and evolution of the Solar system is among the fundamental problems of modern natural science. This problem is interdisciplinary and requires the development of mathematical models for the physical structure and evolution of a gas–dust accretion disk from the initial stages of its formation to the formation of a planetary system. One of the key problems is the formation and growth of bodies in a protoplanetary disk, the basis for which is a study of the collisional processes of the solidbody component. We have performed a parametric analysis of the cluster–cluster collision processes occurring in a protoplanetary disk within the model of permeable particles being developed by us. The outcome of such collisions is shown to be affected significantly by the topological properties of colliding dust clusters with a fractal internal structure. The results of our parametric analysis show that for sufficiently “dense” fractal dust clusters, at low relative collision velocities, there exists a range in which the colliding clusters bounce. At the same time, for “porous” fractal clusters the bounce is impossible for any sets of collision parameters. As the relative collision velocities increase, the cluster coalescence processes begin to dominate due to a rearrangement of the fractal structure in the contact zone. However, as the kinetic energy of collisions increases further, a critical threshold is reached beyond which the collision energy exceeds the particle binding energy in clusters and the fractal dust cluster destruction processes are switched on during collisions. Thus, our parametric analysis imposes quite definite constraints on the dynamics and chronology of the evolution processes during the formation of primordial solid bodies and planetesimals. The proposed approach and the results obtained are fairly realistic and open prospects for more comprehensive model studies of the initial evolutionary phase of a protoplanetary disk.



Data Processing Results for the Active Neutron Measurements by the DAN Instrument on the Curiosity Mars Rover
Abstract
This paper presents the methods of soil parameter estimation from neutron probing data that are used when processing the data from the DAN experiment on the Martian surface. We discuss the data preprocessing steps that enable us to compare experimental data to a Monte-Carlo numerical model, algorithms used to estimate equivalent water and chlorine content for standard soil composition and to dynamically analyse the soil parameters in non-standard cases. We also provide the water and chlorine content estimates and compare them with the SAM experiment data.


