Structure and mechanical properties of foils made of nanocrystalline beryllium


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phase composition and structural features of (45–90)-μm-thick foils obtained from nanocrystalline beryllium during multistep thermomechanical treatment have been established using electron microscopy, electron diffraction, electron backscattering diffraction, and energy-dispersive analysis. This treatment is shown to lead to the formation of a structure with micrometer- and submicrometer-sized grains. The minimum average size of beryllium grains is 352 nm. The inclusions of beryllium oxide (ВеО) of different modifications with tetragonal (sp. gr. P42/mnm) and hexagonal (sp. gr. P63/mmc) lattices are partly ground during deformation to a size smaller than 100 nm and are located along beryllium grain boundaries in their volume, significantly hindering migration during treatment. The revealed structural features of foils with submicrometer-sized crystallites provide the thermal stability of their structural state. Beryllium with this structure is a promising material for X-ray instrument engineering and for the production of ultrathin (less than 10 μm) vacuum-dense foils with very high physicomechanical characteristics.

About the authors

O. M. Zhigalina

Shubnikov Institute of Crystallography; Bauman Moscow State Technical University

Author for correspondence.
Email: zhigal@ns.crys.ras.ru
Russian Federation, Leninskii pr. 59, Moscow, 119333; Vtoraya Baumanskaya ul. 5, Moscow, 105005

A. A. Semenov

Bochvar High-Technology Scientific Research Institute for Inorganic Materials

Email: zhigal@ns.crys.ras.ru
Russian Federation, ul. Rogova 5, Moscow, 123060

A. V. Zabrodin

Bochvar High-Technology Scientific Research Institute for Inorganic Materials

Email: zhigal@ns.crys.ras.ru
Russian Federation, ul. Rogova 5, Moscow, 123060

D. N. Khmelenin

Shubnikov Institute of Crystallography

Email: zhigal@ns.crys.ras.ru
Russian Federation, Leninskii pr. 59, Moscow, 119333

D. A. Brylev

Bochvar High-Technology Scientific Research Institute for Inorganic Materials

Email: zhigal@ns.crys.ras.ru
Russian Federation, ul. Rogova 5, Moscow, 123060

A. V. Lizunov

Bochvar High-Technology Scientific Research Institute for Inorganic Materials

Email: zhigal@ns.crys.ras.ru
Russian Federation, ul. Rogova 5, Moscow, 123060

A. L. Nebera

Bochvar High-Technology Scientific Research Institute for Inorganic Materials

Email: zhigal@ns.crys.ras.ru
Russian Federation, ul. Rogova 5, Moscow, 123060

I. A. Morozov

Bochvar High-Technology Scientific Research Institute for Inorganic Materials

Email: zhigal@ns.crys.ras.ru
Russian Federation, ul. Rogova 5, Moscow, 123060

A. S. Anikin

Bochvar High-Technology Scientific Research Institute for Inorganic Materials

Email: zhigal@ns.crys.ras.ru
Russian Federation, ul. Rogova 5, Moscow, 123060

A. S. Orekhov

Shubnikov Institute of Crystallography

Email: zhigal@ns.crys.ras.ru
Russian Federation, Leninskii pr. 59, Moscow, 119333

A. N. Kuskova

Shubnikov Institute of Crystallography

Email: zhigal@ns.crys.ras.ru
Russian Federation, Leninskii pr. 59, Moscow, 119333

V. V. Mishin

Peter the Great St. Petersburg Polytechnic University

Email: zhigal@ns.crys.ras.ru
Russian Federation, Polytechnicheskaya 29, St. Petersburg, 195251

A. V. Seryogin

Shubnikov Institute of Crystallography; Bauman Moscow State Technical University

Email: zhigal@ns.crys.ras.ru
Russian Federation, Leninskii pr. 59, Moscow, 119333; Vtoraya Baumanskaya ul. 5, Moscow, 105005

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Inc.