🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Delayed Multineutron Emission in the Region of Heavy Calcium Isotopes


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A brief survey of self-consistent models used to perform global calculations of β-decay properties of neutron-rich nuclei is given. These models include the continuum quasiparticle randomphase approximation (CQRPA) based on the energy density functional (DF) proposed by Fayans and his colleagues (DF + CQRPA), relativistic quasiparticle random-phase approximation (RQRPA), and the finite-amplitude method (FAM). These models take into account allowed Gamow–Teller transitions and first-forbidden transitions. Models that allow for complex configurations beyond the QRPA framework are also analyzed. The β-decay properties of heavy calcium, potassium, and scandium isotopes in the vicinity of the N = 32 and 34 neutron subshells, which are new magic subshells for neutrons, are calculated on the basis of the self-consistent DF + CQRPA approach. The predicted high probability for two-neutron emission is found to be correlated with the anomalous nuclear radii measured for potassium and calcium isotopes in the region around N = 32. The results ofDF3 + CQRPA calculations are compared with their counterparts obtained within the self-consistent models implemented with the SkO’ Skyrme functional and the D3C* relativistic functional.

About the authors

I. N. Borzov

National Research Center Kurchatov Institute; Bogolyubov Laboratory for Theoretical Physics

Author for correspondence.
Email: ibor48@mail.ru
Russian Federation, Moscow, 123182; Dubna, 141980

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.