Evolutionary sheath structure in magnetized collisionless plasma with electron inertia
- 作者: Gohain M.1, Karmakar P.K.1
- 
							隶属关系: 
							- Department of Physics
 
- 期: 卷 43, 编号 9 (2017)
- 页面: 957-968
- 栏目: Low-Temperature Plasma
- URL: https://journal-vniispk.ru/1063-780X/article/view/186077
- DOI: https://doi.org/10.1134/S1063780X17090021
- ID: 186077
如何引用文章
详细
A classical hydrodynamic model is methodologically formulated to see the equilibrium properties of a planar plasma sheath in two-component magnetized bounded plasma. It incorporates the weak but finite electron inertia instead of asymptotically inertialess electrons. The effects of the externally applied oblique (relative to the bulk plasma flow) magnetic field are judiciously accented. It is, for the sake of simplicity, assumed that the relevant physical parameters (plasma density, electrostatic potential, and flow velocity) vary only in a direction normal to the confining wall boundary. It is noticed for the first time that the derived Bohm condition for sheath formation is modified conjointly by the electron inertia, magnetic field, and field orientation. It is manifested that the electron inertia in the presence of plasma gyrokinetic effects slightly enhances the ion Mach threshold value (typically, Mi0 ≥ 1.139) toward the sheath entrance. This flow supercriticality is in contrast with the heuristic formalism (Mi0 ≥ 1) for the zero-inertia electrons. A numerical illustrative scheme on the parametric sheath features on diverse nontrivial apposite arguments is constructed alongside ameliorative scope.
作者简介
M. Gohain
Department of Physics
														Email: pkk@tezu.ernet.in
				                					                																			                												                	印度, 							Assam						
P. Karmakar
Department of Physics
							编辑信件的主要联系方式.
							Email: pkk@tezu.ernet.in
				                					                																			                												                	印度, 							Assam						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					