Experiments on the Capture of Li, H, and D by Lithium Collectors at Different Surface Temperatures at the T-11M Tokamak
- Авторы: Zharkov M.Y.1, Shcherbak A.N.2, Mirnov S.V.2, Dzhurik A.S.2, Lazarev V.B.2, Vasina Y.A.2, Otroshchenko V.G.2, Lyublinski I.E.1, Vertkov A.V.1
- 
							Учреждения: 
							- Krasnaya Zvezda State Enterprise
- Troitsk Institute for Innovation and Fusion Research
 
- Выпуск: Том 44, № 11 (2018)
- Страницы: 1001-1008
- Раздел: Tokamaks
- URL: https://journal-vniispk.ru/1063-780X/article/view/186973
- DOI: https://doi.org/10.1134/S1063780X18110090
- ID: 186973
Цитировать
Аннотация
Prototypes of lithium emitters and collectors designed on the basis of capillary-porous systems (CPS) are being tried-out at the T-11M tokamak within the concept of continuous lithium circulation, previously proposed for stationary fusion neutron sources (FNSs). One of the goals of the T-11M tokamak research program are to implement the closure of the lithium circulation circuit and to develop the technology of recuperation (extraction and removal from the tokamak chamber) of hydrogen isotopes by using special lithium CPS-based collectors in order to prevent hydrogen isotope accumulation on the inner surface of the discharge chamber. In order to determine the optimal temperature regime for the future FNS operation, the effect of the temperature of the collector surface on its ability to capture lithium and hydrogen isotopes was studied. It is ascertained that the efficiency of capturing lithium and hydrogen isotopes by metal (12Cr18Ni10Ti) collectors in the operating regimes of the T-11M tokamak depends on the temperature of their collecting surfaces; namely, it remains almost constant in the temperature range from–196 to 50°С and then gradually decreases as the temperature rises to 300–400°С. In this case, the amount of the collected lithium is reduced by no more than sixfold, whereas the amount of collected hydrogen isotopes decreases by more than two orders of magnitude. Thus, the wall of a tokamak reactor chamber, which will be heated to 400°С but still coated with residual lithium (or its chemical compounds), will serve as a “mirror” for the incident hydrogen isotopes. It is found that the liquid lithium surface of the CPS-based collector can efficiently capture hydrogen isotopes falling onto it. As the lithium CPS-based collector is heated from 100 to 240°С, the amount of captured deuterium is reduced only twofold. This means that, in a steady-state mode, if, e.g., an MHD pump is used to transport liquid lithium from the collector back to the emitter, then, together with lithium, the captured hydrogen isotopes can also be transported into the recuperation zone.
Об авторах
M. Zharkov
Krasnaya Zvezda State Enterprise
														Email: shcherbak@triniti.ru
				                					                																			                												                	Россия, 							Moscow, 115230						
A. Shcherbak
Troitsk Institute for Innovation and Fusion Research
							Автор, ответственный за переписку.
							Email: shcherbak@triniti.ru
				                					                																			                												                	Россия, 							Troitsk, Moscow, 108840						
S. Mirnov
Troitsk Institute for Innovation and Fusion Research
														Email: shcherbak@triniti.ru
				                					                																			                												                	Россия, 							Troitsk, Moscow, 108840						
A. Dzhurik
Troitsk Institute for Innovation and Fusion Research
														Email: shcherbak@triniti.ru
				                					                																			                												                	Россия, 							Troitsk, Moscow, 108840						
V. Lazarev
Troitsk Institute for Innovation and Fusion Research
														Email: shcherbak@triniti.ru
				                					                																			                												                	Россия, 							Troitsk, Moscow, 108840						
Ya. Vasina
Troitsk Institute for Innovation and Fusion Research
														Email: shcherbak@triniti.ru
				                					                																			                												                	Россия, 							Troitsk, Moscow, 108840						
V. Otroshchenko
Troitsk Institute for Innovation and Fusion Research
														Email: shcherbak@triniti.ru
				                					                																			                												                	Россия, 							Troitsk, Moscow, 108840						
I. Lyublinski
Krasnaya Zvezda State Enterprise
														Email: shcherbak@triniti.ru
				                					                																			                												                	Россия, 							Moscow, 115230						
A. Vertkov
Krasnaya Zvezda State Enterprise
														Email: shcherbak@triniti.ru
				                					                																			                												                	Россия, 							Moscow, 115230						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					