First-Principles Calculations on the Wettability of Li Atoms on the (111) Surfaces of W and Mo Substrates
- Autores: Yi S.1, Li G.1, Liu Z.2, Hu W.2, Deng H.1,2
- 
							Afiliações: 
							- School of Physics and Electronics
- College of Materials Science and Engineering
 
- Edição: Volume 44, Nº 7 (2018)
- Páginas: 692-701
- Seção: Tokamaks
- URL: https://journal-vniispk.ru/1063-780X/article/view/186859
- DOI: https://doi.org/10.1134/S1063780X18070097
- ID: 186859
Citar
Resumo
Comprehension over the interactions between lithium (Li) atoms and tungsten (W) or molybdenum (Mo) are crucial to improve the wettability of the flowing liquid Li, a candidate plasma facing material in fusion devices, on the surfaces of supported substrate metals. In this work, we utilize first-principles density- functional theory calculations to figure out the adsorption and diffusion properties of Li atoms and clusters on the (111) surfaces of W and Mo. It is found that single Li atom in the fcc-hollow site is the most favored configuration. For the multiple Li atoms adsorption on the substrates, the planar construction is more stable than the stacking one. The electronic structure analysis shows that the lateral interaction between Li atoms is very weak and the binding between Li atom and the substrates is strong; therefore, it can be inferred that the liquid Li is “wetting” intrinsically on the surfaces of the W and Mo substrates. We also investigate the effect of defects (vacancy, H, C, and O) and find that the preexisted vacancy in the substrates has little effect on the wettability; however, the impurities (especially O atom) will hinder the movement of Li atoms on the metal substrates.
Sobre autores
S. Yi
School of Physics and Electronics
														Email: hqdeng@hnu.edu.cn
				                					                																			                												                	República Popular da China, 							Changsha, 410082						
G. Li
School of Physics and Electronics
														Email: hqdeng@hnu.edu.cn
				                					                																			                												                	República Popular da China, 							Changsha, 410082						
Z. Liu
College of Materials Science and Engineering
														Email: hqdeng@hnu.edu.cn
				                					                																			                												                	República Popular da China, 							Changsha, 410082						
W. Hu
College of Materials Science and Engineering
														Email: hqdeng@hnu.edu.cn
				                					                																			                												                	República Popular da China, 							Changsha, 410082						
H. Deng
School of Physics and Electronics; College of Materials Science and Engineering
							Autor responsável pela correspondência
							Email: hqdeng@hnu.edu.cn
				                					                																			                												                	República Popular da China, 							Changsha, 410082; Changsha, 410082						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					