Analytical Expression for the Distribution of Elastic Strain Created by a Polyhedral Inclusion with Arbitrary Eigenstrain
- Авторлар: Nenashev A.V.1, Dvurechenskii A.V.1,2
-
Мекемелер:
- Rzhanov Institute of Semiconductor Physics, Siberian Branch
- Novosibirsk State University
- Шығарылым: Том 60, № 9 (2018)
- Беттер: 1807-1812
- Бөлім: Mechanical Properties, Physics of Strength, and Plasticity
- URL: https://journal-vniispk.ru/1063-7834/article/view/203878
- DOI: https://doi.org/10.1134/S106378341809024X
- ID: 203878
Дәйексөз келтіру
Аннотация
Analytical expressions for the displacement vector, stain tensor, and Eshelby tensor have been obtained in the case where an inclusion in an elastically isotropic infinite medium has a polyhedral shape. The eigenstrain (e.g., the lattice mismatch) is assumed to be constant inside the inclusion but not obligatorily hydrostatic. The obtained expressions describe the strain both inside the inclusion and in its environment. It has been shown that a complex three-dimensional configuration of the elastic strain field (as well as of the displacement vector field) is reduced to a combination of simple functions having an illustrative physical and geometrical interpretation.
Авторлар туралы
A. Nenashev
Rzhanov Institute of Semiconductor Physics, Siberian Branch
Хат алмасуға жауапты Автор.
Email: nenashev@isp.nsc.ru
Ресей, Novosibirsk, 630090
A. Dvurechenskii
Rzhanov Institute of Semiconductor Physics, Siberian Branch; Novosibirsk State University
Email: nenashev@isp.nsc.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090
Қосымша файлдар
