Influence of “ytterbium nanofilm–silicon Si(111)” interfaces on the valence of ytterbium


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work function of ytterbium films of nanometer thickness (from 1 to 16 monolayers) has been measured. The films have been prepared by sputtering of ytterbium in an ultrahigh vacuum on n- and p-type Si(111)7 × 7 silicon substrates with an electrical resistivity from 1 to 20 Ω cm. It has been shown that, in the films with a thickness of less than 8 monolayers, the work function depends nonmonotonically on the amount of ytterbium deposited on the surface (Friedel oscillations), whereas in the films with a thickness of more than 8 monolayers, the work function takes on a constant value (3.3 eV) that exceeds the work function for macroscopic samples (2.6 eV). This difference is associated with the fact that, during the formation of an Yb–Si interface, the large difference in the work functions of ytterbium and silicon (4.63 eV) leads to the transfer of a significant fraction of electrons from the metal to the semiconductor. This transfer of electrons from the film to silicon is accompanied by the lowering of the Yb 5d level below the Fermi level. As a result, the valence of the metal and, accordingly, the work function increase.

About the authors

M. A. Mittsev

Ioffe Physical-Technical Institute

Author for correspondence.
Email: M.Mittsev@mail.ioffe.ru
Russian Federation, Politekhnicheskaya ul. 26, St. Petersburg, 194021

M. V. Kuz’min

Ioffe Physical-Technical Institute

Email: M.Mittsev@mail.ioffe.ru
Russian Federation, Politekhnicheskaya ul. 26, St. Petersburg, 194021

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.