Imaging in Diagnostic Nuclear Medicine


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are modern methods for visualization in diagnostic nuclear medicine. SPECT is known as a workhorse in cardiology, and PET is the gold standard in oncology. The development of nuclear medicine is provided by cooperation of physicists, mathematicians, biologists, medical doctors, and radio-chemists. In spite of extensive clinical applications, several problems may lead to false diagnoses. In particular, the correction of attenuation of gamma radiation in human organs must be taken into account. For interpretation and evaluation of such an effect on the clinical results, we perform physico-mathematical simulation of the SPECT diagnostics in cardiology in the absence and presence of the correction of attenuation. A brief review of the state-of-the art is presented. The simulation employs the first Russian anthropomorphic mathematical phantom that describes the distribution of radio-pharmacological agent (99m Tc-methoxyisobutylisonitrile) in chest organs of a typical male patient. A model for calculation of raw images is developed with allowance for attenuation of radiation in biological tissues and the effect of collimator and detector. The results of the proposed models and calculated images are compared with clinical images obtained at the Meshalkin Institute of Circulation Pathology (Novosibirsk) and Myasnikov Institute of Clinical Cardiology (Moscow). Statistical algorithms are developed for the solution of the inverse problem of image reconstruction based on the entropy principle. The clinical and physico-mathematical approaches are compared in the evaluation of the effect of correction on the quality of reconstructed images of the left ventricle of myocardium.

作者简介

N. Denisova

Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: denisova@itam.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018