Molecular dynamics simulation of the indentation of nanoscale films on a substrate
- Authors: Redkov A.V.1,2, Osipov A.V.1,2, Kukushkin S.A.1,2,3
-
Affiliations:
- Institute for Problems of Mechanical Engineering
- Peter the Great St. Petersburg Polytechnic University
- St. Petersburg National Research University of Information Technologies
- Issue: Vol 42, No 6 (2016)
- Pages: 639-643
- Section: Article
- URL: https://journal-vniispk.ru/1063-7850/article/view/199712
- DOI: https://doi.org/10.1134/S1063785016060274
- ID: 199712
Cite item
Abstract
It is shown that atomistic modeling of the indentation of thin films using the method of molecular dynamics (MD) has some advantages on the nanoscale level in comparison to the traditional method of finite elements. Effects revealed by the MD simulations, including delamination and cracking of the film under indenter and the formation and propagation of dislocations are considered. Elastic properties of a nanoscale film on substrate have been studied using the Tersoff potential in application to the silicon carbide film on silicon (SiC/Si). The results of MD simulation qualitatively agree with recent experimental data for indentation in the SiC/Si system. The influence of parameters of the Tersoff potential on the Young’s modulus of simulated materials has been studied for silicon.
About the authors
A. V. Redkov
Institute for Problems of Mechanical Engineering; Peter the Great St. Petersburg Polytechnic University
Author for correspondence.
Email: avredkov@gmail.com
Russian Federation, St. Petersburg, 199178; St. Petersburg, 195251
A. V. Osipov
Institute for Problems of Mechanical Engineering; Peter the Great St. Petersburg Polytechnic University
Email: avredkov@gmail.com
Russian Federation, St. Petersburg, 199178; St. Petersburg, 195251
S. A. Kukushkin
Institute for Problems of Mechanical Engineering; Peter the Great St. Petersburg Polytechnic University; St. Petersburg National Research University of Information Technologies
Email: avredkov@gmail.com
Russian Federation, St. Petersburg, 199178; St. Petersburg, 195251; St. Petersburg, 197101
Supplementary files
