Speech signal filtration using double-density dual-tree complex wavelet transform


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the task of increasing the quality of speech signal cleaning from additive noise by means of double-density dual-tree complex wavelet transform (DDCWT) as compared to the standard method of wavelet filtration based on a multiscale analysis using discrete wavelet transform (DWT) with real basis set functions such as Daubechies wavelets. It is shown that the use of DDCWT instead of DWT provides a significant increase in the mean opinion score (MOS) rating at a high additive noise and makes it possible to reduce the number of expansion levels for the subsequent correction of wavelet coefficients.

作者简介

A. Yasin

Saratov State University; University of Technology

Email: pavlov.alexeyn@gmail.com
俄罗斯联邦, Saratov, 410012; Baghdad

O. Pavlova

Saratov State University

Email: pavlov.alexeyn@gmail.com
俄罗斯联邦, Saratov, 410012

A. Pavlov

Saratov State University; Yuri Gagarin State Technical University of Saratov; Kotelnikov Institute of Radio Engineering and Electronics (Saratov Branch)

编辑信件的主要联系方式.
Email: pavlov.alexeyn@gmail.com
俄罗斯联邦, Saratov, 410012; Saratov, 410054; Saratov, 410019

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016