Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 49, No 7 (2016)

Genesis and Geography of Soils

Soil cover in the southern forest-steppe of the Central Russian Upland against the background of centennial climate fluctuations

Smirnova L.G., Kukharuk N.S., Chendev Y.G.

Abstract

Special approaches and algorithms for studying the response of zonal soils and the soil cover of the forest-steppe zone to climate fluctuations were developed on the basis of data of repeated soil surveys. They made it possible to analyze the particular transformations of the soil cover as indicators of short-term climate fluctuations in the southern forest-steppe of the Central Russian Upland. Vector soil maps and related databases on soil polygons were developed using GIS technologies. Changes in the climatic conditions between two rounds of large-scale soil surveys in 1971 and 1991 reflecting the so-called Brückner cycles were identified. A characteristic feature of climate change during that period was the rise in the mean annual air temperature by 0.2°C and an increase in the mean annual precipitation by 83 mm. In response to this change, the area of leached chernozems (Luvic Chernozems) on the interfluves somewhat increased, whereas the area of typical chernozems (Haplic Chernozems) decreased.

Eurasian Soil Science. 2016;49(7):721-729
pages 721-729 views

Quantification of the vertical translocation rate of soil solid-phase material by the magnetic tracer method

Gennadiev A.N., Zhidkin A.P.

Abstract

Approaches to the quantification of the vertical translocation rate of soil solid-phase material by the magnetic tracer method have been developed; the tracer penetration depth and rate have been determined, as well as the radial distribution of the tracer in chernozems (Chernozems) and dark gray forest soils (Luvisols) of Belgorod oblast under natural steppe and forest vegetation and in arable lands under agricultural use of different durations. It has been found that the penetration depth of spherical magnetic particles (SMPs) during their 150-year-occurrence in soils of a forest plot is 68 cm under forest, 58 cm on a 100-year old plowland, and only 49 cm on a 150-year-old plowland. In the chernozems of the steppe plot, the penetration depth of SMPs exceeds the studied depth of 70 cm both under natural vegetation and on the plowlands. The penetration rates of SMPs deep into the soil vary significantly among the key plots: 0.92–1.32 mm/year on the forest plot and 1.47–1.63 mm/year on the steppe plot, probably because of the more active recent turbation activity of soil animals.

Eurasian Soil Science. 2016;49(7):730-738
pages 730-738 views

Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps

Rukhovich D.I., Rukhovich A.D., Rukhovich D.D., Simakova M.S., Kulyanitsa A.L., Bryzzhev A.V., Koroleva P.V.

Abstract

The analysis of 34 cloudless fragments of Landsat 5, 7, and 8 images (1985–2014) on the territory of Plavsk, Arsen’evsk, and Chern districts of Tula oblast has been performed. It is shown that bare soil surface on the RED–NIR plots derived from the images cannot be described in the form of a sector of spectral plane as it can be done for the NDVI values. The notion of spectral neighborhood of soil line (SNSL) is suggested. It is defined as the sum of points of the RED–NIR spectral space, which are characterized by spectral characteristics of the bare soil applied for constructing soil lines. The way of the SNSL separation along the line of the lowest concentration density of points on the RED–NIR spectral space is suggested. This line separates bare soil surface from vegetating plants. The SNSL has been applied to construct soil line (SL) for each of the 34 images and to delineate bare soil surface on them. Distances from the points with averaged RED–NIR coordinates to the SL have been calculated using the method of moving window. These distances can be referred to as averaged spectral deviations (ASDs). The calculations have been performed strictly for the SNSL areas. As a result, 34 maps of ASDs have been created. These maps contain ASD values for 6036 points of a grid used in the study. Then, the integral map of normalized ASD values has been built with due account for the number of points participating in the calculation (i.e., lying in the SNSL) within the moving window. The integral map of ASD values has been compared with four traditional soil maps on the studied territory. It is shown that this integral map can be interpreted in terms of soil taxa: the areas of seven soil subtypes (soddy moderately podzolic, soddy slightly podzolic, light gray forest. gray forest, dark gray forest, podzolized chernozems, and leached chernozems) belonging to three soil types (soddy-podzolic, gray forest, and chernozemic soils) can be delineated on it.

Eurasian Soil Science. 2016;49(7):739-756
pages 739-756 views

Soil Chemistry

Transformation of nitrogen compounds in the tundra soils of Northern Fennoscandia

Maslov M.N., Makarov M.I.

Abstract

The transformation of organic nitrogen compounds in the soils of tundra ecosystems of Northern Fennoscandia has been studied under laboratory and natural conditions. Tundra soils contain significant reserves of total nitrogen, but they are poor in its extractable mineral and organic forms. The potential rates of the net mineralization and net immobilization of nitrogen by microorganisms vary among the soils and depend on the C: N ratio in the extractable organic matter and microbial biomass of soil. Under natural conditions, the rate of nitrogen net mineralization is lower than the potential rate determined under laboratory conditions by 6–25 times. The incubation of tundra soils in the presence of plants does not result in the accumulation of mineral nitrogen compounds either in the soil or in microbial biomass. This confirms the high competitive capacity of plants under conditions of limited nitrogen availability in tundra ecosystems.

Eurasian Soil Science. 2016;49(7):757-764
pages 757-764 views

The influence of aminopolycarboxylates on the sorption of copper (II) cations by (Hydro)oxides of iron, Aluminum, and manganese

Kropacheva T.N., Antonova A.S., Kornev V.I.

Abstract

The influence of some complexing agents of (poly)aminopolycarboxylic acids (diethylenetriaminopentaacetic acid (DTPA), ethylenediaminotetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and iminodiacetic acid (IDA)) on the sorption of Cu2+ by crystal and amorphous (hydr)oxides of Fe(III), Al(III), and Mn(IV) that are widespread mineral components of soils was studied. The obtained results are considered in terms of complex-formation in the solution and on the sorbent’s surface. The effect of the complexing agents on the metal sorption (mobilization/immobilization) is determined by (1) the stability, structure, and sorption capability of compexonates formed in the solution; (2) the acidity, and (3) the nature of the sorbent. The desorption effect on Cu2+ cations was found to change in the following sequence of complexing agents: EDTA > DTPA ≫ NTA > IDA. The high-dentate complexing agents (EDTA, DTPA) had the greatest impact on ?u2+ cations bound with crystalline (hydr)oxides of Fe, Al, and Mn. The low denticity of the complexing agents (IDA, NTA) and binding of ?u2+ with amorphous sorbents leads to the weakening of desorption. The decrease in acidity promoted the mobilization of the metal under the influence of complexing agents; the increase in acidity caused its immobilization. The growth in the mobility of heavy metals bound with soil (hydr)oxides of Fe, Al, and Mn due to the complexing agents entering the surface and ground water is considered a factor of ecological risk.

Eurasian Soil Science. 2016;49(7):765-772
pages 765-772 views

Soil Physics

Mathematical modeling of water fluxes in arable chernozems under different land use

Arkhangel’skaya T.A., Khokhlova O.S., Myakshina T.N.

Abstract

The hydrologic regimes of arable chernozems were simulated for two plots located within a watershed. For the last fifty years continuous corn monoculture was practiced in one plot, and permanent bare fallow was practiced in the other plot. Carbonates are detected from a depth of 140–160 cm under corn and from 70–80 cm under bare fallow. The objective of the simulation study was to test the validity of the hypothesis that the shallower depth to carbonates under bare fallow is related to carbonate rise due to changes in the hydrologic regime of bare soil compared to soil under vegetation. Mathematical modeling using the HYDRUS-1D software and the FAO56 method confirmed that the hydrologic regimes of arable chernozems within the two plots are different. The soil water content under bare fallow is generally higher than that under corn. The downward soil water fluxes for the two plots are comparable. The upward soil water fluxes under bare fallow significantly exceed those under corn and affect a thicker soil layer. The changes in the hydrologic regimes of chernozems under bare fallow favor the upward movement of carbonates through both the direct transfer by upward water fluxes and the diffusion of ions.

Eurasian Soil Science. 2016;49(7):773-783
pages 773-783 views

Soil Biology

Dynamics of ecological and biological characteristics of soddy-podzolic soils under long-term oil pollution

Petrov A.M., Versioning A.A., Karimullin L.K., Akaikin D.V., Tarasov O.Y.

Abstract

The dynamics of respiratory and enzyme activities and toxicological properties of loamy-sandy and loamy soddy-podzolic soils (Retisols) under the long-term influence of oil pollution were studied. The concentrations of the pollutant, at which the activity (the ability of self-purification) of the indigenous soil microflora is preserved, were determined. The dynamics of the decrease of oil product content and the time of elimination of the toxic effects on higher plants at the initial pollutant contents were revealed. The parameters of the respiratory and enzyme activities in the course of the 365-day experiment showed that the microbial community of the loamy-sandy soil was more sensitive to oil pollution. The phytotoxic characteristics of the oil-containing loamy-sandy and loamy soils did not correlate with their respiratory and enzyme activities. This fact testifies to some differences in the mechanisms of their influence on living organisms with different organizational levels and to the necessity of taking into account a complex of parameters when assessing the state of the soils under the long-term effects of oil and its products.

Eurasian Soil Science. 2016;49(7):784-791
pages 784-791 views

The influence of Aster x salignus Willd. Invasion on the diversity of soil yeast communities

Glushakova A.M., Kachalkin A.V., Chernov I.Y.

Abstract

The annual dynamics of yeast communities were studied in the soddy-podzolic soil under the thickets of Aster x salignus Willd., one of the widespread invasive plant species in central Russia. Yeast groups in the soils under continuous aster thickets were found to differ greatly from the yeast communities in the soils under the adjacent indigenous meadow vegetation. In both biotopes the same species (Candida vartiovaarae, Candida sake, and Cryptococcus terreus) are dominants. However, in the soils under indigenous grasses, eurybiontic yeasts Rhodotorula mucilaginosa, which almost never occur in the soil under aster, are widespread. In the soil under aster, the shares of other typical epiphytic and pedobiontic yeast fungi (ascomycetic species Wickerhamomyces aniomalus, Barnettozyma californica and basidiomycetic species Cystofilobasidium macerans, Guehomyces pullulans) significantly increase. Thus, the invasion of Aster x salignus has a clear effect on soil yeast complexes reducing their taxonomic and ecological diversity.

Eurasian Soil Science. 2016;49(7):792-795
pages 792-795 views

Mineralogy and Micromorphology of Soils

Ferrihydrite in soils

Vodyanitskii Y.N., Shoba S.A.

Abstract

Ferrihydrite—an ephemeral mineral—is the most active Fe-hydroxide in soils. According to modern data, the ferrihydrite structure contains tetrahedral lattice in addition to the main octahedral lattice, with 10–20% of Fe being concentrated in the former. The presence of Fe tetrahedrons influences the surface properties of this mineral. The chemical composition of ferrihydrite samples depends largely on the size of lattice domains ranging from 2 to 6 nm. Chemically pure ferrihydrite rarely occurs in the soil; it usually contains oxyanion (SiO144-, PO43-) and cation (Al3+) admixtures. Aluminum replace Fe3+ in the structure with a decrease in the mineral particle size. Oxyanions slow down polymerization of Fe3+ aquahydroxomonomers due to the films at the surface of mineral nanoparticles. Si- and Al-ferrihydrites are more resistant to the reductive dissolution than the chemically pure ferrihydrite. In addition, natural ferrihydrite contains organic substance that decreases the grain size of the mineral. External organic ligands favor ferrihydrite dissolution. In the European part of Russia, ferrihydrite is more widespread in the forest soils than in the steppe soils. Poorly crystallized nanoparticles of ferrihydrite adsorb different cations (Zn, Cu) and anions (phosphate, uranyl, arsenate) to immobilize them in soils; therefore, ferrihydrite nanoparticles play a significant role in the biogeochemical cycle of iron and other elements.

Eurasian Soil Science. 2016;49(7):796-806
pages 796-806 views

Identification of carbonate pedofeatures of different ages in modern chernozems

Kovda I.V., Morgun E.G., Lebedeva M.P., Oleinik S.A., Shishkov V.A.

Abstract

Carbonate pedofeatures of three chernozemic soils developed from loesslike loams in the foreststeppe zone of Lipetsk oblast under fallow plot (Luvic Chernozem (Clayic, Pachic)) and under forest (Calcic Chernozem (Clayic, Pachic)) and in the steppe zone of Dnepropetrovsk oblast (Calcic Chernozem (Episiltic, Endoclayic, Pachic)) were studied in the field and laboratory with the use of a set of methods, including the radiocarbon method, mass spectrometry, and micro- and submicromorphology. The morphological diversity of carbonate pedofeatures in these soils was represented by carbonate veins, coatings, disperse carbonates (carbonate impregnations), soft masses (beloglazka), and concretions. In the forest-steppe soils, disperse carbonates and soft masses were absent. The radiocarbon age of carbonate pedofeatures in the forest-steppe soils varied within a relatively narrow range of 3–4.3 ka cal BP with a tendency for a younger age of carbonate concretions subjected to destruction (geodes). In the steppe chernozem, this range was larger, and the 14C ages of different forms of carbonate pedofeatures were different. Thus, soft masses (beloglazka) had the age of 5.5–6 ka cal BP; disperse carbonates, 17.5–18.5 ka cal BP; and hard carbonate concretions, 26–27 ka cal BP. Data on δ13C demonstrated that the isotopic composition of carbon in virtually all the “nonlabile” carbonate pedofeatures does not correspond to the isotopic composition of carbon of the modern soil organic matter. It was shown that the studied chernozemic soils are polygenetic formations containing carbonate pedofeatures of different ages: (a) recent (currently growing), (b) relict, and (c) inherited pedofeatures. The latter group represents complex pedofeatures that include ancient fragments integrated in younger pedofeatures, e.g., the Holocene soft carbonate nodules with inclusions of fragments of the ancient microcodium.

Eurasian Soil Science. 2016;49(7):807-823
pages 807-823 views

Agricultural Chemistry and Soil Fertility

Transformation of soil organic matter in leached chernozems under minimized treatment in the forest-steppe of West Siberia

Sharkov I.N., Samokhvalova L.M., Mishina P.V.

Abstract

Changes in the contents of total organic carbon and the carbon of easily mineralizable fractions of organic matter (labile humus, detritus, and mortmass) in the layers of 0–10, 10–25, and 0–25 cm were studied in leached chernozems ((Luvic Chernozems (Loamic, Aric)) subjected to deep plowing and surface tillage for nine years. In the layer of 0–25 cm, the content of Corg did not show significant difference between these two treatments and comprised 3.68–3.92% in the case of deep plowing and 3.63–4.08% in the case of surface tillage. Tillage practices greatly affected the distribution of easily mineralizable fractions of organic matter in the layers of 0–10 and 10–25 cm, though the difference between two treatments for the entire layer (0–25 cm) was insignificant. Surface tillage resulted in the increase in the contents of mortmass (by 59%), detritus (by 32%), and labile humus (by 8%) in the layer of 0–10 cm in comparison with deep plowing. At the same time, the contents of these fractions in the layer of 10–25 cm in the surface tillage treatment decreased by 67, 46, and 3%, respectively. The estimate of the nitrogen-mineralizing capacity made according to the data on the uptake of soil nitrogen by oat plants in a special greenhouse experiment confirmed the observed regularities of the redistribution of easily mineralizable organic matter fractions by the soil layers. In case of surface tillage, it increased by 23% in the layer of 0–10 cm; for the layer of 0–25 cm, no significant differences in the uptake of nitrogen by oat plants were found for the two studied treatments.

Eurasian Soil Science. 2016;49(7):824-830
pages 824-830 views