🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Study of the Practical Convergence of Evolutionary Algorithms for the Optimal Program Control of a Wheeled Robot


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Evolutionary algorithms for solving the problem of the optimal program control are considered. The most popular evolutionary algorithms, the genetic algorithm (GA), the differential evolution (DE) algorithm, the particle swarm optimization (PSO), the bat-inspired algorithm (BIA), the bees algorithm (BA), and the grey wolf optimizer (GWO) algorithm are described. An experimental analysis of these algorithms and their comparison with gradient methods are given. An experiment was carried out to solve the problem of the optimal control of a mobile robot with phase constraints. Indicators of the best objective functional value, the average value for several startups, and the standard deviation were used to compare the algorithms.

About the authors

A. I. Diveev

Federal Research Center Computer Science and Control; Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: aidiveev@mail.ru
Russian Federation, Moscow; Moscow

S. V. Konstantinov

Peoples’ Friendship University of Russia (RUDN University)

Email: aidiveev@mail.ru
Russian Federation, Moscow

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.