Strictly singular operators in pairs of Lp space


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace QE, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from Lp to Lq is found. There exists a strictly singular but not superstrictly singular operator on Lp, provided that p ≠ 2.

About the authors

E. M. Semenov

Voronezh State University

Author for correspondence.
Email: nadezhka_ssm@geophys.vsu.ru
Russian Federation, Universitetskaya pl. 1, Voronezh, 394006

P. Tradacete

Universidad Carlos III de Madrid

Email: nadezhka_ssm@geophys.vsu.ru
Spain, Madrid

F. L. Hernandez

Complutense University of Madrid

Email: nadezhka_ssm@geophys.vsu.ru
Spain, Madrid

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.