Strictly singular operators in pairs of Lp space
- Authors: Semenov E.M.1, Tradacete P.2, Hernandez F.L.3
-
Affiliations:
- Voronezh State University
- Universidad Carlos III de Madrid
- Complutense University of Madrid
- Issue: Vol 94, No 1 (2016)
- Pages: 450-452
- Section: Mathematics
- URL: https://journal-vniispk.ru/1064-5624/article/view/224106
- DOI: https://doi.org/10.1134/S1064562416040281
- ID: 224106
Cite item
Abstract
Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q ⊂ E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from Lp to Lq is found. There exists a strictly singular but not superstrictly singular operator on Lp, provided that p ≠ 2.
About the authors
E. M. Semenov
Voronezh State University
Author for correspondence.
Email: nadezhka_ssm@geophys.vsu.ru
Russian Federation, Universitetskaya pl. 1, Voronezh, 394006
P. Tradacete
Universidad Carlos III de Madrid
Email: nadezhka_ssm@geophys.vsu.ru
Spain, Madrid
F. L. Hernandez
Complutense University of Madrid
Email: nadezhka_ssm@geophys.vsu.ru
Spain, Madrid
Supplementary files
