Uniqueness of reconstruction of the Sturm–Liouville problem with spectral polynomials in nonseparated boundary conditions
- Authors: Sadovnichii V.A.1, Sultanaev Y.T.2,3, Akhtyamov A.M.3,4
-
Affiliations:
- Mechanics and Mathematics Faculty
- Bashkir State Pedagogical University
- Institute of Mechanics
- Bashkir State University
- Issue: Vol 94, No 1 (2016)
- Pages: 461-463
- Section: Mathematics
- URL: https://journal-vniispk.ru/1064-5624/article/view/224150
- DOI: https://doi.org/10.1134/S1064562416040323
- ID: 224150
Cite item
Abstract
Uniqueness theorems for solutions of inverse Sturm–Liouville problems with spectral polynomials in nonseparated boundary conditions are proved. As spectral data two spectra and finitely many eigenvalues of the direct problem or, in the case of a symmetric potential, one spectrum and finitely many eigenvalues are used. The obtained results generalize the Levinson uniqueness theorem to the case of nonseparated boundary conditions containing polynomials in the spectral parameter.
About the authors
V. A. Sadovnichii
Mechanics and Mathematics Faculty
Author for correspondence.
Email: rector@msu.su
Russian Federation, Moscow, 119991
Ya. T. Sultanaev
Bashkir State Pedagogical University; Institute of Mechanics
Email: rector@msu.su
Russian Federation, ul. Oktyabr’skoi revolyutsii 3a, Ufa, Bashkortostan; ul. Karla Marksa 12, Ufa, 450025 Bashkortostan
A. M. Akhtyamov
Institute of Mechanics; Bashkir State University
Email: rector@msu.su
Russian Federation, ul. Karla Marksa 12, Ufa, 450025 Bashkortostan; ul. Zaki Validi 32, Ufa 450074 Bashkortostan
Supplementary files
