Embedding of Sobolev spaces with limit exponent revisited
- Authors: Besov O.V.1
-
Affiliations:
- Steklov Mathematical Institute
- Issue: Vol 94, No 3 (2016)
- Pages: 684-687
- Section: Mathematics
- URL: https://journal-vniispk.ru/1064-5624/article/view/224607
- DOI: https://doi.org/10.1134/S1064562416060260
- ID: 224607
Cite item
Abstract
An embedding of the Sobolev spaces Wps (ℝn) in Lizorkin-type spaces of locally integrable functions of smoothness zero is obtained; a similar assertion for Riesz and Bessel potentials is presented. The embedding theorem is extended to Sobolev spaces on irregular domains in n-dimensional Euclidean space. The statement of the theorem depends on geometric parameters of the domain of functions.
About the authors
O. V. Besov
Steklov Mathematical Institute
Author for correspondence.
Email: besov@mi.ras.ru
Russian Federation, ul. Gubkina 8, Moscow, 119991
Supplementary files
