Fejér Sums for Periodic Measures and the von Neumann Ergodic Theorem


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Fejér sums of periodic measures and the norms of the deviations from the limit in the von Neumann ergodic theorem are calculated, in fact, using the same formulas (by integrating the Fejér kernels), so this ergodic theorem is, in fact, a statement about the asymptotics of the growth of the Fejér sums at zero for the spectral measure of the corresponding dynamical system. As a result, well-known estimates for the rates of convergence in the von Neumann ergodic theorem can be restated as estimates of the Fejér sums at the point for periodic measures. For example, natural criteria for the polynomial growth and polynomial decrease in these sums can be obtained. On the contrary, available in the literature, numerous estimates for the deviations of Fejér sums at a point can be used to obtain new estimates for the rate of convergence in this ergodic theorem.

About the authors

A. G. Kachurovskii

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Author for correspondence.
Email: agk@math.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

I. V. Podvigin

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: agk@math.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.