Properties of Extrema of Estimates for Middle Derivatives of Odd Order in Sobolev Classes
- Authors: Garmanova T.A.1, Sheipak I.A.1
-
Affiliations:
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
- Issue: Vol 100, No 1 (2019)
- Pages: 367-371
- Section: Mathematics
- URL: https://journal-vniispk.ru/1064-5624/article/view/225697
- DOI: https://doi.org/10.1134/S1064562419040148
- ID: 225697
Cite item
Abstract
The embedding constants for the Sobolev spaces \(\overset{\circ} {W_{2}^{n}} \)[0; 1] ↪ \(\mathop {W_{\infty }^{k}}\limits^{\circ} \)[0; 1] (\(0 \leqslant k \leqslant n - 1\)) are considered. The properties of the functions \({{A}_{{n,k}}}(x)\) arising in the inequalities \({\text{|}}{{f}^{k}}(x){\text{|}} \leqslant A_{{n,k}}^{{}}(x){\text{||}}f{\text{|}}{{{\text{|}}}_{{\mathop {W_{2}^{n}}\limits^{\circ}[0;1]} }}\) are studied. The extremum points of \({{A}_{{n,k}}}\) are calculated for k = 3, 5 and all admissible n. The global maximum of these functions is found, and the exact embedding constants are calculated.
About the authors
T. A. Garmanova
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
Email: iasheip@yandex.ru
Russian Federation, Moscow, 119991
I. A. Sheipak
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
Author for correspondence.
Email: iasheip@yandex.ru
Russian Federation, Moscow, 119991
Supplementary files
