Properties of Extrema of Estimates for Middle Derivatives of Odd Order in Sobolev Classes


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The embedding constants for the Sobolev spaces \(\overset{\circ} {W_{2}^{n}} \)[0; 1] ↪ \(\mathop {W_{\infty }^{k}}\limits^{\circ} \)[0; 1] (\(0 \leqslant k \leqslant n - 1\)) are considered. The properties of the functions \({{A}_{{n,k}}}(x)\) arising in the inequalities \({\text{|}}{{f}^{k}}(x){\text{|}} \leqslant A_{{n,k}}^{{}}(x){\text{||}}f{\text{|}}{{{\text{|}}}_{{\mathop {W_{2}^{n}}\limits^{\circ}[0;1]} }}\) are studied. The extremum points of \({{A}_{{n,k}}}\) are calculated for k = 3, 5 and all admissible n. The global maximum of these functions is found, and the exact embedding constants are calculated.

About the authors

T. A. Garmanova

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University

Email: iasheip@yandex.ru
Russian Federation, Moscow, 119991

I. A. Sheipak

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University

Author for correspondence.
Email: iasheip@yandex.ru
Russian Federation, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.