Stimulated echo method for investigation of structural and dynamic characteristics of branched polymers


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The theory of stimulated echo (SE) without magnetic field gradient is proposed. The theory made it possible for the first time to establish a relationship between the stimulated echo signal and correlation function of molecular mobility. Signals of free induction decay (FID) and SE in polymer networks and branched polymers were modeled. The type of the correlation function at different average chain lengths N0 between knots and different distribution functions of the knots was determined. A strong influence of the molecular weight distribution (MWD) on the type of the correlation function in polymer melts was shown. Two methods were proposed for the numerical determination of the correlation function from the observed FID and SE signals. These methods gave an information about the molecular mobility and topological structure in the samples of branched polymethyl methacrylates of different structures and various molecular weights.

Об авторах

T. Kulagina

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: tan@icp.ac.ru
Россия, 1 prosp. Akad. Semenova, Chernogolovka, Moscow Region, 142432

G. Karnaukh

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: tan@icp.ac.ru
Россия, 1 prosp. Akad. Semenova, Chernogolovka, Moscow Region, 142432

S. Kurmaz

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: tan@icp.ac.ru
Россия, 1 prosp. Akad. Semenova, Chernogolovka, Moscow Region, 142432

O. Vyaselev

Institute of Solid State Physics, Russian Academy of Sciences

Email: tan@icp.ac.ru
Россия, 2 prosp. Akad. Osip´yana, Chernogolovka, Moscow Region, 142432

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).