Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 27, No 3 (2018)

Article

Local Inference by Penalization Method for Biclustering Model

Belitser E., Nurushev N.

Abstract

We study the problem of inference (estimation and uncertainty quantification problems) on the unknown parameter in the biclustering model by using the penalization method. The underlying biclustering structure is that the high-dimensional parameter consists of a few blocks of equal coordinates. The quality of the inference procedures is measured by the local quantity, the oracle rate, which is the best trade-off between the approximation error by a biclustering structure and the complexity of that approximating biclustering structure. The approach is also robust in that the additive errors are assumed to satisfy only certain mild condition (allowing non-iid errors with unknown joint distribution). By using the penalization method, we construct a confidence set and establish its local (oracle) optimality. Interestingly, as we demonstrate, there is (almost) no deceptiveness issue for the uncertainty quantification problem in the biclustering model. Adaptive minimax results for the biclustering, stochastic block model (with implications for network modeling) and graphon scales follow from our local results.

Mathematical Methods of Statistics. 2018;27(3):163-183
pages 163-183 views

Asymptotic Properties of QML Estimation of Multivariate Periodic CCCGARCH Models

Bibi A.

Abstract

In this paper, we explore some probabilistic and statistical properties of constant conditional correlation (CCC) multivariate periodic GARCH models (CCCPGARCH for short). These models which encompass some interesting classes having (locally) long memory property, play an outstanding role in modelling multivariate financial time series exhibiting certain heteroskedasticity. So, we give in the first part some basic structural properties of such models as conditions ensuring the existence of the strict stationary and geometric ergodic solution (in periodic sense). As a result, it is shown that the moments of some positive order for strictly stationary solution of CCCPGARCH models are finite.Upon this finding, we focus in the second part on the quasi-maximum likelihood (QML) estimator for estimating the unknown parameters involved in the models. So we establish strong consistency and asymptotic normality (CAN) of CCCPGARCH models.

Mathematical Methods of Statistics. 2018;27(3):184-204
pages 184-204 views

A Minimax Approach to Errors-in-Variables Linear Models

Golubev Y.

Abstract

The paper considers a simple Errors-in-Variables (EiV) model Yi = a + bXi + εξi; Zi= Xi + σζi, where ξi, ζi are i.i.d. standard Gaussian random variables, Xi ∈ ℝ are unknown non-random regressors, and ε, σ are known noise levels. The goal is to estimates unknown parameters a, b ∈ ℝ based on the observations {Yi, Zi, i = 1, …, n}. It is well known [3] that the maximum likelihood estimates of these parameters have unbounded moments. In order to construct estimates with good statistical properties, we study EiV model in the large noise regime assuming that n → ∞, but \({\epsilon ^2} = \sqrt n \epsilon _ \circ ^2,{\sigma ^2} = \sqrt n \sigma _ \circ ^2\) with some \(\epsilon_\circ^2, \sigma_\circ^2>0\). Under these assumptions, a minimax approach to estimating a, b is developed. It is shown that minimax estimates are solutions to a convex optimization problem and a fast algorithm for solving it is proposed.

Mathematical Methods of Statistics. 2018;27(3):205-225
pages 205-225 views

Truncated Estimation of Ratio Statistics with Application to Heavy Tail Distributions

Politis D.N., Vasiliev V.A., Vorobeychikov S.E.

Abstract

The problem of estimation of the heavy tail index is revisited from the point of view of truncated estimation. A class of novel estimators is introduced having guaranteed accuracy based on a sample of fixed size. The performance of these estimators is quantified both theoretically and in simulations over a host of relevant examples. It is also shown that in several cases the proposed estimators attain — within a logarithmic factor — the optimal parametric rate of convergence. The property of uniform asymptotic normality of the proposed estimators is established.

Mathematical Methods of Statistics. 2018;27(3):226-243
pages 226-243 views