On the lower bound in second order estimation for Poisson processes: Asymptotic efficiency
- Авторлар: Gasparyan S.B.1, Kutoyants Y.A.1
-
Мекемелер:
- University of Maine
- Шығарылым: Том 26, № 1 (2017)
- Беттер: 1-19
- Бөлім: Article
- URL: https://journal-vniispk.ru/1066-5307/article/view/225776
- DOI: https://doi.org/10.3103/S106653071701001X
- ID: 225776
Дәйексөз келтіру
Аннотация
In the estimation problem of the mean function of an inhomogeneous Poisson process there is a class of kernel type estimators that are asymptotically efficient alongside with the empirical mean function. We start by describing such a class of estimators which we call first order efficient estimators. To choose the best one among them we prove a lower bound that compares the second order term of the mean integrated square error of all estimators. The proof is carried out under the assumption on the mean function Λ(·) that Λ(τ) = S, where S is a known positive number. In the end, we discuss the possibility of the construction of an estimator which attains this lower bound, thus, is asymptotically second order efficient.
Негізгі сөздер
Авторлар туралы
S. Gasparyan
University of Maine
Хат алмасуға жауапты Автор.
Email: GasparyanSB@gmail.com
Армения, Yerevan
Y. Kutoyants
University of Maine
Email: GasparyanSB@gmail.com
Ресей, Voronezh
Қосымша файлдар
