On the lower bound in second order estimation for Poisson processes: Asymptotic efficiency


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the estimation problem of the mean function of an inhomogeneous Poisson process there is a class of kernel type estimators that are asymptotically efficient alongside with the empirical mean function. We start by describing such a class of estimators which we call first order efficient estimators. To choose the best one among them we prove a lower bound that compares the second order term of the mean integrated square error of all estimators. The proof is carried out under the assumption on the mean function Λ(·) that Λ(τ) = S, where S is a known positive number. In the end, we discuss the possibility of the construction of an estimator which attains this lower bound, thus, is asymptotically second order efficient.

Sobre autores

S. Gasparyan

University of Maine

Autor responsável pela correspondência
Email: GasparyanSB@gmail.com
Armênia, Yerevan

Y. Kutoyants

University of Maine

Email: GasparyanSB@gmail.com
Rússia, Voronezh

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2017