Laguerre deconvolution with unknown matrix operator
- Авторы: Comte F.1, Mabon G.2
-
Учреждения:
- Univ. Lyon, Univ. Claude Bernard Lyon 1 MAP5, UMR CNRS 8145, Univ. Paris Descartes
- Inst. Math. Humboldt-Univ. zu Berlin
- Выпуск: Том 26, № 4 (2017)
- Страницы: 237-266
- Раздел: Article
- URL: https://journal-vniispk.ru/1066-5307/article/view/225801
- DOI: https://doi.org/10.3103/S1066530717040019
- ID: 225801
Цитировать
Аннотация
In this paper we consider the convolutionmodel Z = X + Y withX of unknown density f, independent of Y, when both random variables are nonnegative. Our goal is to estimate the unknown density f of X from n independent identically distributed observations of Z, when the law of the additive process Y is unknown. When the density of Y is known, a solution to the problem has been proposed in [17]. To make the problem identifiable for unknown density of Y, we assume that we have access to a preliminary sample of the nuisance process Y. The question is to propose a solution to an inverse problem with unknown operator. To that aim, we build a family of projection estimators of f on the Laguerre basis, well-suited for nonnegative random variables. The dimension of the projection space is chosen thanks to a model selection procedure by penalization. At last we prove that the final estimator satisfies an oracle inequality. It can be noted that the study of the mean integrated square risk is based on Bernstein’s type concentration inequalities developed for random matrices in [23].
Об авторах
F. Comte
Univ. Lyon, Univ. Claude Bernard Lyon 1 MAP5, UMR CNRS 8145, Univ. Paris Descartes
Автор, ответственный за переписку.
Email: fabienne.comte@parisdescartes.fr
Франция, Paris
G. Mabon
Inst. Math. Humboldt-Univ. zu Berlin
Email: fabienne.comte@parisdescartes.fr
Германия, Berlin
Дополнительные файлы
