On Predictive Density Estimation under α-Divergence Loss


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Based on X ∼ Nd(θ, σX2Id), we study the efficiency of predictive densities under α-divergence loss Lα for estimating the density of Y ∼ Nd(θ, σY2Id). We identify a large number of cases where improvement on a plug-in density are obtainable by expanding the variance, thus extending earlier findings applicable to Kullback-Leibler loss. The results and proofs are unified with respect to the dimension d, the variances σX2 and σY2, the choice of loss Lα; α ∈ (−1, 1). The findings also apply to a large number of plug-in densities, as well as for restricted parameter spaces with θ ∈ Θ ⊂ ℝd. The theoretical findings are accompanied by various observations, illustrations, and implications dealing for instance with robustness with respect to the model variances and simultaneous dominance with respect to the loss.

Авторлар туралы

A. L’Moudden

Dept. de math.

Хат алмасуға жауапты Автор.
Email: aziz.lmoudden@usherbrooke.ca
Канада, Sherbrooke, Qc

È. Marchand

Dept. de math.

Хат алмасуға жауапты Автор.
Email: eric.marchand@usherbrooke.ca
Канада, Sherbrooke, Qc

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019