On Predictive Density Estimation under α-Divergence Loss


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on X ∼ Nd(θ, σX2Id), we study the efficiency of predictive densities under α-divergence loss Lα for estimating the density of Y ∼ Nd(θ, σY2Id). We identify a large number of cases where improvement on a plug-in density are obtainable by expanding the variance, thus extending earlier findings applicable to Kullback-Leibler loss. The results and proofs are unified with respect to the dimension d, the variances σX2 and σY2, the choice of loss Lα; α ∈ (−1, 1). The findings also apply to a large number of plug-in densities, as well as for restricted parameter spaces with θ ∈ Θ ⊂ ℝd. The theoretical findings are accompanied by various observations, illustrations, and implications dealing for instance with robustness with respect to the model variances and simultaneous dominance with respect to the loss.

Sobre autores

A. L’Moudden

Dept. de math.

Autor responsável pela correspondência
Email: aziz.lmoudden@usherbrooke.ca
Canadá, Sherbrooke, Qc

È. Marchand

Dept. de math.

Autor responsável pela correspondência
Email: eric.marchand@usherbrooke.ca
Canadá, Sherbrooke, Qc

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019