Structural adaptive deconvolution under \({\mathbb{L}_p}\)-losses


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we address the problem of estimating a multidimensional density f by using indirect observations from the statistical model Y = X + ε. Here, ε is a measurement error independent of the random vector X of interest and having a known density with respect to Lebesgue measure. Our aim is to obtain optimal accuracy of estimation under \({\mathbb{L}_p}\)-losses when the error ε has a characteristic function with a polynomial decay. To achieve this goal, we first construct a kernel estimator of f which is fully data driven. Then, we derive for it an oracle inequality under very mild assumptions on the characteristic function of the error ε. As a consequence, we getminimax adaptive upper bounds over a large scale of anisotropic Nikolskii classes and we prove that our estimator is asymptotically rate optimal when p ∈ [2,+∞]. Furthermore, our estimation procedure adapts automatically to the possible independence structure of f and this allows us to improve significantly the accuracy of estimation.

Sobre autores

G. Rebelles

Inst. Math. de Marseille

Autor responsável pela correspondência
Email: rebelles.gilles@neuf.fr
França, Marseille

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016