Structural adaptive deconvolution under \({\mathbb{L}_p}\)-losses


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we address the problem of estimating a multidimensional density f by using indirect observations from the statistical model Y = X + ε. Here, ε is a measurement error independent of the random vector X of interest and having a known density with respect to Lebesgue measure. Our aim is to obtain optimal accuracy of estimation under \({\mathbb{L}_p}\)-losses when the error ε has a characteristic function with a polynomial decay. To achieve this goal, we first construct a kernel estimator of f which is fully data driven. Then, we derive for it an oracle inequality under very mild assumptions on the characteristic function of the error ε. As a consequence, we getminimax adaptive upper bounds over a large scale of anisotropic Nikolskii classes and we prove that our estimator is asymptotically rate optimal when p ∈ [2,+∞]. Furthermore, our estimation procedure adapts automatically to the possible independence structure of f and this allows us to improve significantly the accuracy of estimation.

作者简介

G. Rebelles

Inst. Math. de Marseille

编辑信件的主要联系方式.
Email: rebelles.gilles@neuf.fr
法国, Marseille

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016